Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.03533
Cited By
Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win
7 October 2020
Utku Evci
Yani Andrew Ioannou
Cem Keskin
Yann N. Dauphin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win"
17 / 17 papers shown
Title
Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry
Mohammed Adnan
Rohan Jain
Ekansh Sharma
Rahul Krishnan
Yani Andrew Ioannou
56
0
0
08 May 2025
Information Consistent Pruning: How to Efficiently Search for Sparse Networks?
Soheil Gharatappeh
S. Y. Sekeh
54
0
0
28 Jan 2025
Pushing the Limits of Sparsity: A Bag of Tricks for Extreme Pruning
Andy Li
A. Durrant
Milan Markovic
Lu Yin
Georgios Leontidis
Tianlong Chen
Lu Yin
Georgios Leontidis
75
0
0
20 Nov 2024
Navigating Extremes: Dynamic Sparsity in Large Output Spaces
Nasib Ullah
Erik Schultheis
Mike Lasby
Yani Andrew Ioannou
Rohit Babbar
33
0
0
05 Nov 2024
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness
Boqian Wu
Q. Xiao
Shunxin Wang
N. Strisciuglio
Mykola Pechenizkiy
M. V. Keulen
D. Mocanu
Elena Mocanu
OOD
3DH
52
0
0
03 Oct 2024
NTK-SAP: Improving neural network pruning by aligning training dynamics
Yite Wang
Dawei Li
Ruoyu Sun
31
19
0
06 Apr 2023
Considering Layerwise Importance in the Lottery Ticket Hypothesis
Benjamin Vandersmissen
José Oramas
15
1
0
22 Feb 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
27
6
0
09 Jan 2023
Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning Ticket's Mask?
Mansheej Paul
F. Chen
Brett W. Larsen
Jonathan Frankle
Surya Ganguli
Gintare Karolina Dziugaite
UQCV
25
38
0
06 Oct 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
Shiwei Liu
Tianlong Chen
Zahra Atashgahi
Xiaohan Chen
Ghada Sokar
Elena Mocanu
Mykola Pechenizkiy
Zhangyang Wang
D. Mocanu
OOD
28
49
0
28 Jun 2021
Recent Advances on Neural Network Pruning at Initialization
Huan Wang
Can Qin
Yue Bai
Yulun Zhang
Yun Fu
CVBM
31
64
0
11 Mar 2021
Sparse Training Theory for Scalable and Efficient Agents
D. Mocanu
Elena Mocanu
T. Pinto
Selima Curci
Phuong H. Nguyen
M. Gibescu
D. Ernst
Z. Vale
45
17
0
02 Mar 2021
Truly Sparse Neural Networks at Scale
Selima Curci
D. Mocanu
Mykola Pechenizkiy
25
19
0
02 Feb 2021
Efficient Estimation of Influence of a Training Instance
Sosuke Kobayashi
Sho Yokoi
Jun Suzuki
Kentaro Inui
TDI
27
15
0
08 Dec 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
224
382
0
05 Mar 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
234
0
04 Mar 2020
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
348
0
14 Jun 2018
1