Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.06772
Cited By
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
14 October 2020
Adam D. Cobb
Brian Jalaian
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting"
16 / 16 papers shown
Title
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
64
0
0
03 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
49
4
0
14 Oct 2024
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
31
2
0
29 Aug 2024
CONFINE: Conformal Prediction for Interpretable Neural Networks
Linhui Huang
S. Lala
N. Jha
68
2
0
01 Jun 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
Practical Layout-Aware Analog/Mixed-Signal Design Automation with Bayesian Neural Networks
A. Budak
Keren Zhu
Yao Lai
19
3
0
27 Nov 2023
Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference
Arnaud Descours
Tom Huix
Arnaud Guillin
Manon Michel
Eric Moulines
Boris Nectoux
BDL
32
1
0
10 Jul 2023
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
G. Klambauer
Sepp Hochreiter
UQCV
42
14
0
06 Jul 2023
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
41
2
0
05 Jun 2023
On Sequential Bayesian Inference for Continual Learning
Samuel Kessler
Adam D. Cobb
Tim G. J. Rudner
S. Zohren
Stephen J. Roberts
CLL
BDL
64
6
0
04 Jan 2023
Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study
David Ruhe
Kaze W. K. Wong
M. Cranmer
Patrick Forré
16
6
0
15 Nov 2022
Split personalities in Bayesian Neural Networks: the case for full marginalisation
David Yallup
Will Handley
Michael P. Hobson
A. Lasenby
Pablo Lemos
25
1
0
23 May 2022
LEO: Learning Energy-based Models in Factor Graph Optimization
Paloma Sodhi
Eric Dexheimer
Mustafa Mukadam
Stuart Anderson
Michael Kaess
40
16
0
04 Aug 2021
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo
Vyacheslav Kungurtsev
Adam D. Cobb
T. Javidi
Brian Jalaian
51
4
0
15 Jul 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1