ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.07064
  4. Cited By
Optimal quantisation of probability measures using maximum mean
  discrepancy
v1v2v3v4 (latest)

Optimal quantisation of probability measures using maximum mean discrepancy

14 October 2020
Onur Teymur
Jackson Gorham
M. Riabiz
Chris J. Oates
ArXiv (abs)PDFHTML

Papers citing "Optimal quantisation of probability measures using maximum mean discrepancy"

17 / 17 papers shown
Title
Stationary MMD Points for Cubature
Stationary MMD Points for Cubature
Zonghao Chen
Toni Karvonen
Heishiro Kanagawa
F. Briol
Chris J. Oates
64
0
0
27 May 2025
A Quadrature Approach for General-Purpose Batch Bayesian Optimization
  via Probabilistic Lifting
A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Saad Hamid
Harald Oberhauser
Michael A. Osborne
GP
68
3
0
18 Apr 2024
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics
  Approach
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics Approach
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Xingchen Wan
Vu Nguyen
Harald Oberhauser
Michael A. Osborne
113
5
0
09 Jun 2023
Stein $Π$-Importance Sampling
Stein ΠΠΠ-Importance Sampling
Congye Wang
Ye Chen
Heishiro Kanagawa
Chris J. Oates
91
2
0
17 May 2023
Bayes Hilbert Spaces for Posterior Approximation
Bayes Hilbert Spaces for Posterior Approximation
George Wynne
77
1
0
18 Apr 2023
Sobolev Spaces, Kernels and Discrepancies over Hyperspheres
Sobolev Spaces, Kernels and Discrepancies over Hyperspheres
S. Hubbert
Emilio Porcu
Chris J. Oates
Mark Girolami
61
4
0
16 Nov 2022
Minimum Kernel Discrepancy Estimators
Minimum Kernel Discrepancy Estimators
Chris J. Oates
63
10
0
28 Oct 2022
Model predictivity assessment: incremental test-set selection and
  accuracy evaluation
Model predictivity assessment: incremental test-set selection and accuracy evaluation
E. Fekhari
Bertrand Iooss
Joseph Muré
L. Pronzato
M. Rendas
64
13
0
08 Jul 2022
Benchmarking Bayesian neural networks and evaluation metrics for
  regression tasks
Benchmarking Bayesian neural networks and evaluation metrics for regression tasks
B. Staber
Sébastien Da Veiga
UQCVBDL
54
3
0
08 Jun 2022
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Cole Hawkins
Alec Koppel
Zheng Zhang
66
4
0
18 Jan 2022
Minimum Discrepancy Methods in Uncertainty Quantification
Minimum Discrepancy Methods in Uncertainty Quantification
Chris J. Oates
72
2
0
13 Sep 2021
Sparse solutions of the kernel herding algorithm by improved gradient
  approximation
Sparse solutions of the kernel herding algorithm by improved gradient approximation
Kazuma Tsuji
Ken’ichiro Tanaka
49
0
0
17 May 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
101
35
0
07 May 2021
Post-Processing of MCMC
Post-Processing of MCMC
Leah F. South
M. Riabiz
Onur Teymur
Chris J. Oates
92
18
0
30 Mar 2021
Performance analysis of greedy algorithms for minimising a Maximum Mean
  Discrepancy
Performance analysis of greedy algorithms for minimising a Maximum Mean Discrepancy
L. Pronzato
66
15
0
19 Jan 2021
Optimal Thinning of MCMC Output
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
78
47
0
08 May 2020
A Riemann-Stein Kernel Method
A Riemann-Stein Kernel Method
Alessandro Barp
Christine J. Oates
Emilio Porcu
Mark Girolami
86
22
0
11 Oct 2018
1