Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.09429
Cited By
v1
v2 (latest)
Neural Additive Vector Autoregression Models for Causal Discovery in Time Series
19 October 2020
Bart Bussmann
Jannes Nys
Steven Latré
CML
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Neural Additive Vector Autoregression Models for Causal Discovery in Time Series"
18 / 18 papers shown
Title
Flow-Based Non-stationary Temporal Regime Causal Structure Learning
Abdellah Rahmani
P. Frossard
AI4TS
CML
26
0
0
20 Jun 2025
Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series
Zachary C. Brown
David Carlson
CML
AI4CE
62
0
0
27 May 2025
Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Albert Wilcox
Mohamed Ghanem
Masoud Moghani
Pierre Barroso
Benjamin Joffe
Animesh Garg
164
0
0
06 Mar 2025
Causal Temporal Regime Structure Learning
Abdellah Rahmani
Pascal Frossard
CML
256
2
0
20 Feb 2025
LinBridge: A Learnable Framework for Interpreting Nonlinear Neural Encoding Models
Xiaohui Gao
Yue Cheng
Peiyang Li
Yijie Niu
Yifan Ren
Yiheng Liu
Haiyang Sun
Zhuoyi Li
Weiwei Xing
Xintao Hu
AI4CE
48
0
0
26 Oct 2024
Sortability of Time Series Data
Christopher Lohse
Jonas Wahl
CML
103
2
0
18 Jul 2024
Jacobian Regularizer-based Neural Granger Causality
Wanqi Zhou
Shuanghao Bai
Shujian Yu
Qibin Zhao
Badong Chen
CML
85
4
0
14 May 2024
Bayesian Vector AutoRegression with Factorised Granger-Causal Graphs
He Zhao
V. Kitsios
Terry O'Kane
Edwin V. Bonilla
CML
105
1
0
06 Feb 2024
Doubly Robust Structure Identification from Temporal Data
Emmanouil Angelis
Francesco Quinzan
Ashkan Soleymani
Patrick Jaillet
Stefan Bauer
CML
OOD
78
2
0
10 Nov 2023
Neural Structure Learning with Stochastic Differential Equations
Benjie Wang
Joel Jennings
Wenbo Gong
CML
AI4TS
66
7
0
06 Nov 2023
Efficient Interpretable Nonlinear Modeling for Multiple Time Series
K. Roy
Luis Miguel Lopez Ramos
B. Beferull-Lozano
AI4TS
44
0
0
29 Sep 2023
Hierarchical Topological Ordering with Conditional Independence Test for Limited Time Series
Anpeng Wu
Haoxuan Li
Kun Kuang
Ke Zhang
Leilei Gan
CML
117
2
0
16 Aug 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
126
31
0
27 Mar 2023
CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data
Muhammad Hasan Ferdous
Uzma Hasan
Md. Osman Gani
CML
64
3
0
07 Feb 2023
Evaluating Temporal Observation-Based Causal Discovery Techniques Applied to Road Driver Behaviour
Rhys Howard
Lars Kunze
CML
86
7
0
31 Jan 2023
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
119
11
0
07 Nov 2022
Rhino: Deep Causal Temporal Relationship Learning With History-dependent Noise
Wenbo Gong
Joel Jennings
Chen Zhang
Nick Pawlowski
AI4TS
CML
92
27
0
26 Oct 2022
Deep Recurrent Modelling of Granger Causality with Latent Confounding
Zexuan Yin
P. Barucca
CML
BDL
50
13
0
23 Feb 2022
1