Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.09456
Cited By
GASNet: Weakly-supervised Framework for COVID-19 Lesion Segmentation
19 October 2020
Zhanwei Xu
Yukun Cao
Cheng Jin
Guozhu Shao
Xiaoqing Liu
Jie Zhou
Heshui Shi
Jianjiang Feng
MedIm
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GASNet: Weakly-supervised Framework for COVID-19 Lesion Segmentation"
5 / 5 papers shown
Title
Light In The Black: An Evaluation of Data Augmentation Techniques for COVID-19 CT's Semantic Segmentation
Bruno A. Krinski
Daniel V. Ruiz
E. Todt
3DPC
30
2
0
19 May 2022
COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions from Chest CT Scans
Nastaran Enshaei
A. Oikonomou
M. Rafiee
Parnian Afshar
Shahin Heidarian
Arash Mohammadi
Konstantinos N. Plataniotis
F. Naderkhani
11
4
0
04 Jul 2021
Lung Infection Quantification of COVID-19 in CT Images with Deep Learning
F. Shan
Yaozong Gao
Jun Wang
Weiya Shi
N. Shi
Miaofei Han
Zhong Xue
D. Shen
Yuxin Shi
97
575
0
10 Mar 2020
CT-Realistic Lung Nodule Simulation from 3D Conditional Generative Adversarial Networks for Robust Lung Segmentation
D. Jin
Ziyue Xu
Youbao Tang
Adam P. Harrison
D. Mollura
MedIm
44
185
0
11 Jun 2018
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
216
2,050
0
07 Jun 2016
1