ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12320
  4. Cited By
Learning Implicit Functions for Topology-Varying Dense 3D Shape
  Correspondence

Learning Implicit Functions for Topology-Varying Dense 3D Shape Correspondence

23 October 2020
Feng Liu
Xiaoming Liu
    3DPC
ArXivPDFHTML

Papers citing "Learning Implicit Functions for Topology-Varying Dense 3D Shape Correspondence"

6 / 6 papers shown
Title
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D
  Features
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features
Thomas Wimmer
Peter Wonka
M. Ovsjanikov
19
8
0
29 Nov 2023
EFEM: Equivariant Neural Field Expectation Maximization for 3D Object
  Segmentation Without Scene Supervision
EFEM: Equivariant Neural Field Expectation Maximization for 3D Object Segmentation Without Scene Supervision
Jiahui Lei
Congyue Deng
Karl Schmeckpeper
Leonidas J. Guibas
Kostas Daniilidis
3DPC
6
21
0
27 Mar 2023
TEGLO: High Fidelity Canonical Texture Mapping from Single-View Images
TEGLO: High Fidelity Canonical Texture Mapping from Single-View Images
Vishal Vinod
Tanmay Shah
Dmitry Lagun
24
4
0
24 Mar 2023
Laplacian ICP for Progressive Registration of 3D Human Head Meshes
Laplacian ICP for Progressive Registration of 3D Human Head Meshes
Nick E. Pears
H. Dai
William A. P. Smith
Haobo Sun
3DH
8
3
0
04 Feb 2023
ImFace: A Nonlinear 3D Morphable Face Model with Implicit Neural
  Representations
ImFace: A Nonlinear 3D Morphable Face Model with Implicit Neural Representations
Mingwu Zheng
Hongyu Yang
Di Huang
Liming Luke Chen
3DH
22
59
0
28 Mar 2022
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
115
325
0
13 Jun 2018
1