ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12455
  4. Cited By
Primal-Dual Mesh Convolutional Neural Networks

Primal-Dual Mesh Convolutional Neural Networks

23 October 2020
Francesco Milano
Antonio Loquercio
Antoni Rosinol
Davide Scaramuzza
Luca Carlone
    3DPC
    AI4CE
ArXivPDFHTML

Papers citing "Primal-Dual Mesh Convolutional Neural Networks"

9 / 9 papers shown
Title
Segment Any Mesh
Segment Any Mesh
George Tang
William Zhao
Logan Ford
David Benhaim
Paul Zhang
19
8
0
24 Aug 2024
SieveNet: Selecting Point-Based Features for Mesh Networks
SieveNet: Selecting Point-Based Features for Mesh Networks
Shengchao Yuan
Yishun Dou
Rui Shi
Bingbing Ni
Zhong Zheng
3DPC
8
0
0
24 Aug 2023
Random Walks for Adversarial Meshes
Random Walks for Adversarial Meshes
Amir Belder
Gal Yefet
Ran Ben Izhak
A. Tal
AAML
17
2
0
15 Feb 2022
Laplacian2Mesh: Laplacian-Based Mesh Understanding
Laplacian2Mesh: Laplacian-Based Mesh Understanding
Qiujie Dong
Zixiong Wang
Manyi Li
Junjie Gao
Shuangmin Chen
Zhenyu Shu
Shiqing Xin
Changhe Tu
Wenping Wang
14
24
0
01 Feb 2022
Deep 3D Mesh Watermarking with Self-Adaptive Robustness
Deep 3D Mesh Watermarking with Self-Adaptive Robustness
Feng Wang
Hang Zhou
Han Fang
Xiaojuan Dong
Weiming Zhang
Xi Yang
Nenghai Yu
AAML
3DV
8
10
0
15 Sep 2021
Smooth Mesh Estimation from Depth Data using Non-Smooth Convex
  Optimization
Smooth Mesh Estimation from Depth Data using Non-Smooth Convex Optimization
Antoni Rosinol
Luca Carlone
13
3
0
06 Aug 2021
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
83
120
0
11 Mar 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
231
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
1