ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12605
  4. Cited By
Using machine learning to correct model error in data assimilation and
  forecast applications

Using machine learning to correct model error in data assimilation and forecast applications

23 October 2020
A. Farchi
P. Laloyaux
Massimo Bonavita
Marc Bocquet
    AI4CE
ArXivPDFHTML

Papers citing "Using machine learning to correct model error in data assimilation and forecast applications"

30 / 30 papers shown
Title
Foundation Models for Environmental Science: A Survey of Emerging Frontiers
Foundation Models for Environmental Science: A Survey of Emerging Frontiers
Runlong Yu
Shengyu Chen
Yiqun Xie
Huaxiu Yao
J. Willard
X. Jia
AI4CE
43
1
0
05 Apr 2025
Ensemble Kalman filter in latent space using a variational autoencoder pair
Ensemble Kalman filter in latent space using a variational autoencoder pair
I. Pasmans
Yumeng Chen
Tobias S. Finn
Marc Bocquet
A. Carrassi
53
0
0
18 Feb 2025
Ensemble Transport Filter via Optimized Maximum Mean Discrepancy
Ensemble Transport Filter via Optimized Maximum Mean Discrepancy
Dengfei Zeng
Lijian Jiang
OT
26
1
0
16 Jul 2024
Decomposing weather forecasting into advection and convection with
  neural networks
Decomposing weather forecasting into advection and convection with neural networks
Mengxuan Chen
Ziqi Yuan
Jinxiao Zhang
Runmin Dong
Haohuan Fu
45
0
0
10 May 2024
U-Net Kalman Filter (UNetKF): An Example of Machine Learning-assisted
  Ensemble Data Assimilation
U-Net Kalman Filter (UNetKF): An Example of Machine Learning-assisted Ensemble Data Assimilation
Feiyu Lu
18
0
0
19 Mar 2024
Online model error correction with neural networks: application to the
  Integrated Forecasting System
Online model error correction with neural networks: application to the Integrated Forecasting System
A. Farchi
M. Chrust
Marc Bocquet
Massimo Bonavita
26
0
0
06 Mar 2024
Learning Semilinear Neural Operators : A Unified Recursive Framework For
  Prediction And Data Assimilation
Learning Semilinear Neural Operators : A Unified Recursive Framework For Prediction And Data Assimilation
Ashutosh Singh
R. Borsoi
Deniz Erdogmus
Tales Imbiriba
60
0
0
24 Feb 2024
Data Assimilation in Chaotic Systems Using Deep Reinforcement Learning
Data Assimilation in Chaotic Systems Using Deep Reinforcement Learning
Mohamad Abed El Rahman Hammoud
Naila Raboudi
E. Titi
Omar Knio
Ibrahim Hoteit
AI4CE
35
2
0
01 Jan 2024
FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D
  Variational Assimilation
FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation
Yi Xiao
Lei Bai
Wei Xue
Kang Chen
Tao Han
Wanli Ouyang
AI4Cl
44
24
0
16 Dec 2023
Machine-learning parameter tracking with partial state observation
Machine-learning parameter tracking with partial state observation
Zheng-Meng Zhai
Mohammadamin Moradi
Bryan Glaz
Mulugeta Haile
Ying-Cheng Lai
37
7
0
15 Nov 2023
Gradient-free online learning of subgrid-scale dynamics with neural
  emulators
Gradient-free online learning of subgrid-scale dynamics with neural emulators
Hugo Frezat
Ronan Fablet
G. Balarac
Julien Le Sommer
32
4
0
30 Oct 2023
Interpretable structural model error discovery from sparse assimilation
  increments using spectral bias-reduced neural networks: A quasi-geostrophic
  turbulence test case
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
R. Mojgani
Ashesh Chattopadhyay
Pedram Hassanzadeh
38
7
0
22 Sep 2023
Latent assimilation with implicit neural representations for unknown
  dynamics
Latent assimilation with implicit neural representations for unknown dynamics
Zhuoyuan Li
Bin Dong
Pingwen Zhang
AI4CE
29
3
0
18 Sep 2023
Neural Koopman prior for data assimilation
Neural Koopman prior for data assimilation
Anthony Frion
Lucas Drumetz
M. Dalla Mura
Guillaume Tochon
Abdeldjalil Aissa El Bey
AI4TS
AI4CE
35
4
0
11 Sep 2023
Online machine-learning forecast uncertainty estimation for sequential
  data assimilation
Online machine-learning forecast uncertainty estimation for sequential data assimilation
M. Sacco
M. Pulido
J. J. Ruiz
P. Tandeo
35
3
0
12 May 2023
Machine learning with data assimilation and uncertainty quantification
  for dynamical systems: a review
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
Sibo Cheng
César Quilodrán-Casas
Said Ouala
A. Farchi
Che Liu
...
Weiping Ding
Yike Guo
A. Carrassi
Marc Bocquet
Rossella Arcucci
AI4CE
37
124
0
18 Mar 2023
Reduced-Order Autodifferentiable Ensemble Kalman Filters
Reduced-Order Autodifferentiable Ensemble Kalman Filters
Yuming Chen
D. Sanz-Alonso
Rebecca Willett
46
8
0
27 Jan 2023
Learning 4DVAR inversion directly from observations
Learning 4DVAR inversion directly from observations
Arthur Filoche
J. Brajard
A. Charantonis
Dominique Béréziat
29
2
0
17 Nov 2022
Online model error correction with neural networks in the incremental
  4D-Var framework
Online model error correction with neural networks in the incremental 4D-Var framework
A. Farchi
M. Chrust
Marc Bocquet
P. Laloyaux
Massimo Bonavita
68
17
0
25 Oct 2022
A posteriori learning for quasi-geostrophic turbulence parametrization
A posteriori learning for quasi-geostrophic turbulence parametrization
Hugo Frezat
Julien Le Sommer
Ronan Fablet
G. Balarac
Redouane Lguensat
27
56
0
08 Apr 2022
Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
  Machine Learning Surrogate Models
Generalised Latent Assimilation in Heterogeneous Reduced Spaces with Machine Learning Surrogate Models
Sibo Cheng
Jianhua Chen
Charitos Anastasiou
P. Angeli
Omar K. Matar
Yi-Ke Guo
Christopher C. Pain
Rossella Arcucci
AI4CE
46
60
0
07 Apr 2022
Discrepancy Modeling Framework: Learning missing physics, modeling
  systematic residuals, and disambiguating between deterministic and random
  effects
Discrepancy Modeling Framework: Learning missing physics, modeling systematic residuals, and disambiguating between deterministic and random effects
Megan R. Ebers
K. Steele
J. Nathan Kutz
42
15
0
10 Mar 2022
Composing a surrogate observation operator for sequential data
  assimilation
Composing a surrogate observation operator for sequential data assimilation
Kosuke Akita
Yuto Miyatake
Daisuke Furihata
18
0
0
29 Jan 2022
Discovery of interpretable structural model errors by combining Bayesian
  sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test
  case
Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case
R. Mojgani
Ashesh Chattopadhyay
Pedram Hassanzadeh
29
15
0
01 Oct 2021
Combining data assimilation and machine learning to estimate parameters
  of a convective-scale model
Combining data assimilation and machine learning to estimate parameters of a convective-scale model
Stefanie Legler
T. Janjić
48
18
0
07 Sep 2021
State, global and local parameter estimation using local ensemble Kalman
  filters: applications to online machine learning of chaotic dynamics
State, global and local parameter estimation using local ensemble Kalman filters: applications to online machine learning of chaotic dynamics
Quentin Malartic
A. Farchi
Marc Bocquet
41
19
0
23 Jul 2021
A comparison of combined data assimilation and machine learning methods
  for offline and online model error correction
A comparison of combined data assimilation and machine learning methods for offline and online model error correction
A. Farchi
Marc Bocquet
P. Laloyaux
Massimo Bonavita
Quentin Malartic
OffRL
44
35
0
23 Jul 2021
A Framework for Machine Learning of Model Error in Dynamical Systems
A Framework for Machine Learning of Model Error in Dynamical Systems
Matthew E. Levine
Andrew M. Stuart
32
67
0
14 Jul 2021
Variational Data Assimilation with a Learned Inverse Observation
  Operator
Variational Data Assimilation with a Learned Inverse Observation Operator
Thomas Frerix
Dmitrii Kochkov
Jamie A. Smith
Daniel Cremers
M. Brenner
Stephan Hoyer
41
29
0
22 Feb 2021
Combining Machine Learning with Knowledge-Based Modeling for Scalable
  Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
  Systems
Combining Machine Learning with Knowledge-Based Modeling for Scalable Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal Systems
Alexander Wikner
Jaideep Pathak
Brian Hunt
M. Girvan
T. Arcomano
I. Szunyogh
Andrew Pomerance
Edward Ott
AI4CE
64
70
0
10 Feb 2020
1