Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.12606
Cited By
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
23 October 2020
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization"
8 / 8 papers shown
Title
iGAiVA: Integrated Generative AI and Visual Analytics in a Machine Learning Workflow for Text Classification
Yuanzhe Jin
Adrian Carrasco-Revilla
Min Chen
VLM
25
1
0
24 Sep 2024
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset
Leon Sixt
M. Schuessler
Oana-Iuliana Popescu
Philipp Weiß
Tim Landgraf
FAtt
24
14
0
25 Apr 2022
AI visualization in Nanoscale Microscopy
A. Rajagopal
V. Nirmala
J. Andrew
Karunya Institute of Technology
16
1
0
04 Jan 2022
Two4Two: Evaluating Interpretable Machine Learning - A Synthetic Dataset For Controlled Experiments
M. Schuessler
Philipp Weiß
Leon Sixt
22
3
0
06 May 2021
Adversarial Perturbations Are Not So Weird: Entanglement of Robust and Non-Robust Features in Neural Network Classifiers
Jacob Mitchell Springer
Melanie Mitchell
Garrett T. Kenyon
AAML
16
13
0
09 Feb 2021
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
19
48
0
19 Oct 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,233
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
1