ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.12618
  4. Cited By
Counterfactual Representation Learning with Balancing Weights
v1v2 (latest)

Counterfactual Representation Learning with Balancing Weights

23 October 2020
Serge Assaad
Shuxi Zeng
Chenyang Tao
Shounak Datta
Nikhil Mehta
Ricardo Henao
Fan Li
Lawrence Carin
    CMLOOD
ArXiv (abs)PDFHTML

Papers citing "Counterfactual Representation Learning with Balancing Weights"

21 / 21 papers shown
Title
Doubly Robust Causal Effect Estimation under Networked Interference via
  Targeted Learning
Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning
Weilin Chen
Ruichu Cai
Zeqin Yang
Jie Qiao
Yuguang Yan
Zijian Li
Zhifeng Hao
CML
79
7
0
06 May 2024
Defining Expertise: Applications to Treatment Effect Estimation
Defining Expertise: Applications to Treatment Effect Estimation
Alihan Huyuk
Qiyao Wei
Alicia Curth
M. Schaar
CML
68
2
0
01 Mar 2024
Bounds on Representation-Induced Confounding Bias for Treatment Effect
  Estimation
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
79
10
0
19 Nov 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CMLOOD
212
2
0
16 Oct 2023
NESTER: An Adaptive Neurosymbolic Method for Causal Effect Estimation
NESTER: An Adaptive Neurosymbolic Method for Causal Effect Estimation
Abbavaram Gowtham Reddy
V. Balasubramanian
CML
42
0
0
08 Nov 2022
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects
  Estimation
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation
Ioana Bica
M. Schaar
OODCML
70
22
0
08 Oct 2022
Long-term Causal Effects Estimation via Latent Surrogates Representation
  Learning
Long-term Causal Effects Estimation via Latent Surrogates Representation Learning
Ruichu Cai
Weilin Chen
Zeqin Yang
Shu Wan
Chen Zheng
Xiaoqing Yang
Jiecheng Guo
CMLBDL
94
12
0
09 Aug 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of
  Interpretability
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
110
16
0
16 Jun 2022
Is More Data All You Need? A Causal Exploration
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
63
2
0
06 Jun 2022
DÁRTAGNAN: Counterfactual Video Generation
DÁRTAGNAN: Counterfactual Video Generation
Hadrien Reynaud
Athanasios Vlontzos
Mischa Dombrowski
Ciarán M. Gilligan-Lee
A. Beqiri
Paul Leeson
Bernhard Kainz
VGenCMLMedIm
80
20
0
03 Jun 2022
Multiple Domain Causal Networks
Multiple Domain Causal Networks
Tianhui Zhou
IV WilliamE.Carson
M. H. Klein
David Carlson
CML
32
0
0
13 May 2022
Outcome Assumptions and Duality Theory for Balancing Weights
Outcome Assumptions and Duality Theory for Balancing Weights
David Bruns-Smith
Avi Feller
48
5
0
17 Mar 2022
Estimating Conditional Average Treatment Effects with Missing Treatment
  Information
Estimating Conditional Average Treatment Effects with Missing Treatment Information
Milan Kuzmanovic
Tobias Hatt
Stefan Feuerriegel
CML
50
6
0
02 Mar 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
  Data
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data
Alicia Curth
Changhee Lee
M. Schaar
CML
70
30
0
26 Oct 2021
Estimating Potential Outcome Distributions with Collaborating Causal
  Networks
Estimating Potential Outcome Distributions with Collaborating Causal Networks
Tianhui Zhou
William E Carson IV
David Carlson
CML
208
8
0
04 Oct 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OODCMLBDL
113
17
0
04 Sep 2021
On Inductive Biases for Heterogeneous Treatment Effect Estimation
On Inductive Biases for Heterogeneous Treatment Effect Estimation
Alicia Curth
M. Schaar
CML
193
84
0
07 Jun 2021
Learning from Counterfactual Links for Link Prediction
Learning from Counterfactual Links for Link Prediction
Tong Zhao
Gang Liu
Daheng Wang
Wenhao Yu
Meng Jiang
CMLOOD
87
100
0
03 Jun 2021
Matched sample selection with GANs for mitigating attribute confounding
Matched sample selection with GANs for mitigating attribute confounding
Chandan Singh
Guha Balakrishnan
Pietro Perona
GAN
69
6
0
24 Mar 2021
Robust Orthogonal Machine Learning of Treatment Effects
Robust Orthogonal Machine Learning of Treatment Effects
Yiyan Huang
Cheuk Hang Leung
Qi Wu
Xing Yan
OODCML
50
0
0
22 Mar 2021
Automated versus do-it-yourself methods for causal inference: Lessons
  learned from a data analysis competition
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
261
288
0
09 Jul 2017
1