Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.13764
Cited By
Enforcing Interpretability and its Statistical Impacts: Trade-offs between Accuracy and Interpretability
26 October 2020
Gintare Karolina Dziugaite
Shai Ben-David
Daniel M. Roy
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enforcing Interpretability and its Statistical Impacts: Trade-offs between Accuracy and Interpretability"
21 / 21 papers shown
Title
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
73
2
0
14 Feb 2025
Fairness and Sparsity within Rashomon sets: Enumeration-Free Exploration and Characterization
Lucas Langlade
Julien Ferry
Gabriel Laberge
Thibaut Vidal
51
0
0
07 Feb 2025
Are Logistic Models Really Interpretable?
Danial Dervovic
Freddy Lecue
Nicolas Marchesotti
Daniele Magazzeni
27
0
0
19 Jun 2024
A Theory of Interpretable Approximations
Marco Bressan
Nicolò Cesa-Bianchi
Emmanuel Esposito
Yishay Mansour
Shay Moran
Maximilian Thiessen
FAtt
24
4
0
15 Jun 2024
DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation
Yinjun Wu
Mayank Keoliya
Kan Chen
Neelay Velingker
Ziyang Li
E. Getzen
Qi Long
Mayur Naik
Ravi B. Parikh
Eric Wong
44
1
0
02 Jun 2024
Towards Interpretable Hate Speech Detection using Large Language Model-extracted Rationales
Ayushi Nirmal
Amrita Bhattacharjee
Paras Sheth
Huan Liu
AAML
35
11
0
19 Mar 2024
SoK: Taming the Triangle -- On the Interplays between Fairness, Interpretability and Privacy in Machine Learning
Julien Ferry
Ulrich Aivodji
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
26
5
0
22 Dec 2023
Transitivity Recovering Decompositions: Interpretable and Robust Fine-Grained Relationships
Abhra Chaudhuri
Massimiliano Mancini
Zeynep Akata
Anjan Dutta
24
2
0
24 Oct 2023
Distance-Aware eXplanation Based Learning
Misgina Tsighe Hagos
Niamh Belton
Kathleen M. Curran
Brian Mac Namee
FAtt
23
0
0
11 Sep 2023
Neurosymbolic AI for Reasoning on Biomedical Knowledge Graphs
L. Delong
Ramon Fernández Mir
Zonglin Ji
Fiona Niamh Coulter Smith
Jacques D. Fleuriot
35
1
0
17 Jul 2023
Learning from Exemplary Explanations
Misgina Tsighe Hagos
Kathleen M. Curran
Brian Mac Namee
FAtt
24
1
0
12 Jul 2023
Explainable Lifelong Stream Learning Based on "Glocal" Pairwise Fusion
C. K. Loo
W. S. Liew
S. Wermter
CLL
11
0
0
23 Jun 2023
Integration of Radiomics and Tumor Biomarkers in Interpretable Machine Learning Models
L. Brocki
N. C. Chung
17
6
0
20 Mar 2023
Feature Perturbation Augmentation for Reliable Evaluation of Importance Estimators in Neural Networks
L. Brocki
N. C. Chung
FAtt
AAML
43
11
0
02 Mar 2023
Neurosymbolic AI for Reasoning over Knowledge Graphs: A Survey
L. Delong
Ramon Fernández Mir
Jacques D. Fleuriot
NAI
28
12
0
14 Feb 2023
Testing the effectiveness of saliency-based explainability in NLP using randomized survey-based experiments
Adel Rahimi
Shaurya Jain
FAtt
13
0
0
25 Nov 2022
Rethinking Log Odds: Linear Probability Modelling and Expert Advice in Interpretable Machine Learning
Danial Dervovic
Nicolas Marchesotti
Freddy Lecue
Daniele Magazzeni
37
0
0
11 Nov 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
30
11
0
13 May 2022
Learning Optimal Fair Classification Trees: Trade-offs Between Interpretability, Fairness, and Accuracy
Nathanael Jo
S. Aghaei
A. Gómez
P. Vayanos
FaML
27
12
0
24 Jan 2022
Explanation from Specification
Harish Naik
Gyorgy Turán
XAI
27
0
0
13 Dec 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1