Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2010.14785
Cited By
v1
v2 (latest)
Designing Interpretable Approximations to Deep Reinforcement Learning
28 October 2020
Nathan Dahlin
K. C. Kalagarla
Nikhil Naik
Rahul Jain
Pierluigi Nuzzo
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Designing Interpretable Approximations to Deep Reinforcement Learning"
6 / 6 papers shown
Title
Fidelity-Induced Interpretable Policy Extraction for Reinforcement Learning
Xiao Liu
Wubing Chen
Mao Tan
130
2
0
12 Sep 2023
Interpretable Deep Reinforcement Learning for Green Security Games with Real-Time Information
V. Sharma
John P. Dickerson
Erfaun Noorani
AI4CE
80
0
0
09 Nov 2022
ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
Neural Information Processing Systems (NeurIPS), 2022
Ronilo Ragodos
Tong Wang
Qihang Lin
Xun Zhou
123
9
0
06 Nov 2022
Keeping Minimal Experience to Achieve Efficient Interpretable Policy Distillation
Xiao Liu
Shuyang Liu
Wenbin Li
Shangdong Yang
Yang Gao
OffRL
92
0
0
02 Mar 2022
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Statistics Survey (Stat. Surv.), 2021
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
339
809
0
20 Mar 2021
NuCLS: A scalable crowdsourcing, deep learning approach and dataset for nucleus classification, localization and segmentation
M. Amgad
Lamees A. Atteya
Hagar Hussein
K. Mohammed
Ehab Hafiz
...
Critical Care
David Manthey
Atlanta
D. Neurology
Lurie Cancer Center
118
88
0
18 Feb 2021
1