ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.14785
  4. Cited By
Designing Interpretable Approximations to Deep Reinforcement Learning
v1v2 (latest)

Designing Interpretable Approximations to Deep Reinforcement Learning

28 October 2020
Nathan Dahlin
K. C. Kalagarla
Nikhil Naik
Rahul Jain
Pierluigi Nuzzo
ArXiv (abs)PDFHTML

Papers citing "Designing Interpretable Approximations to Deep Reinforcement Learning"

6 / 6 papers shown
Title
Fidelity-Induced Interpretable Policy Extraction for Reinforcement
  Learning
Fidelity-Induced Interpretable Policy Extraction for Reinforcement Learning
Xiao Liu
Wubing Chen
Mao Tan
130
2
0
12 Sep 2023
Interpretable Deep Reinforcement Learning for Green Security Games with
  Real-Time Information
Interpretable Deep Reinforcement Learning for Green Security Games with Real-Time Information
V. Sharma
John P. Dickerson
Erfaun Noorani
AI4CE
80
0
0
09 Nov 2022
ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
ProtoX: Explaining a Reinforcement Learning Agent via PrototypingNeural Information Processing Systems (NeurIPS), 2022
Ronilo Ragodos
Tong Wang
Qihang Lin
Xun Zhou
123
9
0
06 Nov 2022
Keeping Minimal Experience to Achieve Efficient Interpretable Policy
  Distillation
Keeping Minimal Experience to Achieve Efficient Interpretable Policy Distillation
Xiao Liu
Shuyang Liu
Wenbin Li
Shangdong Yang
Yang Gao
OffRL
92
0
0
02 Mar 2022
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand ChallengesStatistics Survey (Stat. Surv.), 2021
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaMLAI4CELRM
339
809
0
20 Mar 2021
NuCLS: A scalable crowdsourcing, deep learning approach and dataset for
  nucleus classification, localization and segmentation
NuCLS: A scalable crowdsourcing, deep learning approach and dataset for nucleus classification, localization and segmentation
M. Amgad
Lamees A. Atteya
Hagar Hussein
K. Mohammed
Ehab Hafiz
...
Critical Care
David Manthey
Atlanta
D. Neurology
Lurie Cancer Center
118
88
0
18 Feb 2021
1