Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.15703
Cited By
Permute, Quantize, and Fine-tune: Efficient Compression of Neural Networks
29 October 2020
Julieta Martinez
Jashan Shewakramani
Ting Liu
Ioan Andrei Bârsan
Wenyuan Zeng
R. Urtasun
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Permute, Quantize, and Fine-tune: Efficient Compression of Neural Networks"
8 / 8 papers shown
Title
Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling
Wanghan Xu
Fenghua Ling
Wenlong Zhang
Tao Han
Hao Chen
Wanli Ouyang
Lei Bai
AI4CE
34
5
0
22 May 2024
GPTVQ: The Blessing of Dimensionality for LLM Quantization
M. V. Baalen
Andrey Kuzmin
Markus Nagel
Peter Couperus
Cédric Bastoul
E. Mahurin
Tijmen Blankevoort
Paul N. Whatmough
MQ
34
28
0
23 Feb 2024
Hyperspherical Quantization: Toward Smaller and More Accurate Models
Dan Liu
X. Chen
Chen-li Ma
Xue Liu
MQ
22
3
0
24 Dec 2022
Deep learning model compression using network sensitivity and gradients
M. Sakthi
N. Yadla
Raj Pawate
19
2
0
11 Oct 2022
Multi-modal Streaming 3D Object Detection
Mazen Abdelfattah
Kaiwen Yuan
Z. J. Wang
Rabab Ward
3DPC
21
7
0
12 Sep 2022
Enabling On-Device Smartphone GPU based Training: Lessons Learned
Anish Das
Young D. Kwon
Jagmohan Chauhan
Cecilia Mascolo
3DH
27
10
0
21 Feb 2022
Toward Compact Parameter Representations for Architecture-Agnostic Neural Network Compression
Yuezhou Sun
Wenlong Zhao
Lijun Zhang
Xiao Liu
Hui Guan
Matei A. Zaharia
21
0
0
19 Nov 2021
Fine-grained Data Distribution Alignment for Post-Training Quantization
Yunshan Zhong
Mingbao Lin
Mengzhao Chen
Ke Li
Yunhang Shen
Fei Chao
Yongjian Wu
Rongrong Ji
MQ
84
19
0
09 Sep 2021
1