Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.02367
Cited By
Federated Knowledge Distillation
4 November 2020
Hyowoon Seo
Jihong Park
Seungeun Oh
M. Bennis
Seong-Lyun Kim
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Knowledge Distillation"
46 / 46 papers shown
Title
Learning Critically: Selective Self Distillation in Federated Learning on Non-IID Data
Yuting He
Yiqiang Chen
Xiaodong Yang
H. Yu
Yi-Hua Huang
Yang Gu
FedML
55
20
0
20 Apr 2025
Evidential Federated Learning for Skin Lesion Image Classification
Rutger Hendrix
Federica Proietto Salanitri
C. Spampinato
S. Palazzo
Ulas Bagci
VLM
FedML
21
0
0
15 Nov 2024
FedBrain-Distill: Communication-Efficient Federated Brain Tumor Classification Using Ensemble Knowledge Distillation on Non-IID Data
Rasoul Jafari Gohari
Laya Aliahmadipour
Ezat Valipour
FedML
31
0
0
09 Sep 2024
Federated Distillation: A Survey
Lin Li
Jianping Gou
Baosheng Yu
Lan Du
Zhang Yiand Dacheng Tao
DD
FedML
51
4
0
02 Apr 2024
LEFL: Low Entropy Client Sampling in Federated Learning
Waqwoya Abebe
J. P. Muñoz
Ali Jannesari
FedML
12
0
0
29 Dec 2023
Temporal Knowledge Distillation for Time-Sensitive Financial Services Applications
Hongda Shen
Eren Kurshan
AAML
11
1
0
28 Dec 2023
Heterogeneous Federated Learning Using Knowledge Codistillation
Jared Lichtarge
Ehsan Amid
Shankar Kumar
Tien-Ju Yang
Rohan Anil
Rajiv Mathews
FedML
26
0
0
04 Oct 2023
Rethinking Client Drift in Federated Learning: A Logit Perspective
Yu-bao Yan
Chun-Mei Feng
Senior Member Ieee Wangmeng Zuo Senior Member Ieee Mang Ye
Mong Goh
Ping Li
Rick Siow
Lei Zhu
F. I. C. L. Philip Chen
FedML
33
8
0
20 Aug 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
32
23
0
20 Jul 2023
Revisiting Data-Free Knowledge Distillation with Poisoned Teachers
Junyuan Hong
Yi Zeng
Shuyang Yu
Lingjuan Lyu
R. Jia
Jiayu Zhou
AAML
11
8
0
04 Jun 2023
Selective Knowledge Sharing for Privacy-Preserving Federated Distillation without A Good Teacher
Jiawei Shao
Fangzhao Wu
Jun Zhang
FedML
24
26
0
04 Apr 2023
FedACK: Federated Adversarial Contrastive Knowledge Distillation for Cross-Lingual and Cross-Model Social Bot Detection
Yingguang Yang
Renyu Yang
Hao Peng
Yangyang Li
Tong Li
Yong Liao
Pengyuan Zhou
FedML
34
28
0
10 Mar 2023
Memory-adaptive Depth-wise Heterogenous Federated Learning
Kai Zhang
Yutong Dai
Hongyi Wang
Eric P. Xing
Xun Chen
Lichao Sun
FedML
18
7
0
08 Mar 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
81
47
0
21 Feb 2023
Heterogeneous Federated Knowledge Graph Embedding Learning and Unlearning
Xiangrong Zhu
Guang-pu Li
Wei Hu
MU
FedML
20
46
0
04 Feb 2023
Federated Learning for Energy Constrained IoT devices: A systematic mapping study
Rachid El Mokadem
Yann Ben Maissa
Zineb El Akkaoui
13
8
0
09 Jan 2023
Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges
Enrique Tomás Martínez Beltrán
Mario Quiles Pérez
Pedro Miguel Sánchez Sánchez
Sergio López Bernal
Gérome Bovet
M. Pérez
Gregorio Martínez Pérez
Alberto Huertas Celdrán
FedML
18
221
0
15 Nov 2022
Knowledge Distillation for Federated Learning: a Practical Guide
Alessio Mora
Irene Tenison
Paolo Bellavista
Irina Rish
FedML
22
17
0
09 Nov 2022
Meta Knowledge Condensation for Federated Learning
Ping Liu
Xin Yu
Joey Tianyi Zhou
DD
FedML
25
28
0
29 Sep 2022
Enhancing Heterogeneous Federated Learning with Knowledge Extraction and Multi-Model Fusion
Duy Phuong Nguyen
Sixing Yu
J. P. Muñoz
Ali Jannesari
FedML
19
12
0
16 Aug 2022
Multi-Level Branched Regularization for Federated Learning
Jinkyu Kim
Geeho Kim
Bohyung Han
FedML
10
53
0
14 Jul 2022
Federated Distillation based Indoor Localization for IoT Networks
Yaya Etiabi
Marwa Chafii
El-Mehdi Amhoud
FedML
28
15
0
23 May 2022
Uncertainty Minimization for Personalized Federated Semi-Supervised Learning
Yanhang Shi
Siguang Chen
Haijun Zhang
FedML
21
8
0
05 May 2022
Autonomy and Intelligence in the Computing Continuum: Challenges, Enablers, and Future Directions for Orchestration
Henna Kokkonen
Lauri Lovén
Naser Hossein Motlagh
Abhishek Kumar
Juha Partala
...
M. Bennis
Sasu Tarkoma
Schahram Dustdar
Susanna Pirttikangas
J. Riekki
25
26
0
03 May 2022
FedDKD: Federated Learning with Decentralized Knowledge Distillation
Xinjia Li
Boyu Chen
Wenlian Lu
FedML
11
17
0
02 May 2022
An Efficient Federated Distillation Learning System for Multi-task Time Series Classification
Huanlai Xing
Zhiwen Xiao
R. Qu
Zonghai Zhu
Bowen Zhao
FedML
35
108
0
30 Dec 2021
Communication and Energy Efficient Slimmable Federated Learning via Superposition Coding and Successive Decoding
Hankyul Baek
Won Joon Yun
Soyi Jung
Jihong Park
Mingyue Ji
Joongheon Kim
M. Bennis
44
1
0
05 Dec 2021
Towards Model Agnostic Federated Learning Using Knowledge Distillation
A. Afonin
Sai Praneeth Karimireddy
FedML
30
44
0
28 Oct 2021
FedHe: Heterogeneous Models and Communication-Efficient Federated Learning
Chan Yun Hin
Edith C. H. Ngai
FedML
19
24
0
19 Oct 2021
Adaptive Distillation: Aggregating Knowledge from Multiple Paths for Efficient Distillation
Sumanth Chennupati
Mohammad Mahdi Kamani
Zhongwei Cheng
Lin Chen
19
4
0
19 Oct 2021
Neural Tangent Kernel Empowered Federated Learning
Kai Yue
Richeng Jin
Ryan Pilgrim
Chau-Wai Wong
D. Baron
H. Dai
FedML
22
17
0
07 Oct 2021
Federated Learning of Molecular Properties with Graph Neural Networks in a Heterogeneous Setting
Wei-wei Zhu
Jiebo Luo
Andrew D. White
FedML
20
32
0
15 Sep 2021
FedZKT: Zero-Shot Knowledge Transfer towards Resource-Constrained Federated Learning with Heterogeneous On-Device Models
Lan Zhang
Dapeng Oliver Wu
Xiaoyong Yuan
FedML
19
47
0
08 Sep 2021
FedKD: Communication Efficient Federated Learning via Knowledge Distillation
Chuhan Wu
Fangzhao Wu
Lingjuan Lyu
Yongfeng Huang
Xing Xie
FedML
15
370
0
30 Aug 2021
Semantics-Native Communication with Contextual Reasoning
Hyowoon Seo
Jihong Park
M. Bennis
Mérouane Debbah
LRM
35
36
0
12 Aug 2021
Communication Optimization in Large Scale Federated Learning using Autoencoder Compressed Weight Updates
Srikanth Chandar
Pravin Chandran
Raghavendra Bhat
Avinash Chakravarthi
AI4CE
26
3
0
12 Aug 2021
FedLab: A Flexible Federated Learning Framework
Dun Zeng
Siqi Liang
Xiangjing Hu
Hui Wang
Zenglin Xu
FedML
6
107
0
24 Jul 2021
Local-Global Knowledge Distillation in Heterogeneous Federated Learning with Non-IID Data
Dezhong Yao
Wanning Pan
Yutong Dai
Yao Wan
Xiaofeng Ding
Hai Jin
Zheng Xu
Lichao Sun
FedML
12
49
0
30 Jun 2021
Reward-Based 1-bit Compressed Federated Distillation on Blockchain
Leon Witt
Usama Zafar
KuoYeh Shen
Felix Sattler
Dan Li
Wojciech Samek
FedML
24
4
0
27 Jun 2021
Data-Free Knowledge Distillation for Heterogeneous Federated Learning
Zhuangdi Zhu
Junyuan Hong
Jiayu Zhou
FedML
16
627
0
20 May 2021
Distributed Learning in Wireless Networks: Recent Progress and Future Challenges
Mingzhe Chen
Deniz Gündüz
Kaibin Huang
Walid Saad
M. Bennis
Aneta Vulgarakis Feljan
H. Vincent Poor
21
401
0
05 Apr 2021
FedAUX: Leveraging Unlabeled Auxiliary Data in Federated Learning
Felix Sattler
Tim Korjakow
R. Rischke
Wojciech Samek
FedML
6
115
0
04 Feb 2021
Communication-Efficient Federated Distillation
Felix Sattler
Arturo Marbán
R. Rischke
Wojciech Samek
FedML
DD
13
35
0
01 Dec 2020
Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications
Jihong Park
S. Samarakoon
Anis Elgabli
Joongheon Kim
M. Bennis
Seong-Lyun Kim
Mérouane Debbah
23
161
0
06 Aug 2020
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
19
2,835
0
09 Jun 2020
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
272
404
0
09 Apr 2018
1