Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.02828
Cited By
Local SGD: Unified Theory and New Efficient Methods
3 November 2020
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local SGD: Unified Theory and New Efficient Methods"
50 / 75 papers shown
Title
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
28
0
0
12 May 2025
Achieving Tighter Finite-Time Rates for Heterogeneous Federated Stochastic Approximation under Markovian Sampling
Feng Zhu
Aritra Mitra
Robert W. Heath
FedML
36
0
0
15 Apr 2025
Provable Reduction in Communication Rounds for Non-Smooth Convex Federated Learning
Karlo Palenzuela
Ali Dadras
A. Yurtsever
Tommy Löfstedt
FedML
40
0
0
27 Mar 2025
A Unified Analysis of Federated Learning with Arbitrary Client Participation
Shiqiang Wang
Mingyue Ji
FedML
29
55
0
31 Dec 2024
Distributed Sign Momentum with Local Steps for Training Transformers
Shuhua Yu
Ding Zhou
Cong Xie
An Xu
Zhi-Li Zhang
Xin Liu
S. Kar
64
0
0
26 Nov 2024
Tighter Performance Theory of FedExProx
Wojciech Anyszka
Kaja Gruntkowska
A. Tyurin
Peter Richtárik
FedML
21
0
0
20 Oct 2024
Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation
Grigory Malinovsky
Umberto Michieli
Hasan Hammoud
Taha Ceritli
Hayder Elesedy
Mete Ozay
Peter Richtárik
AI4CE
27
1
0
10 Oct 2024
Accelerated Stochastic ExtraGradient: Mixing Hessian and Gradient Similarity to Reduce Communication in Distributed and Federated Learning
Dmitry Bylinkin
Kirill Degtyarev
Aleksandr Beznosikov
FedML
34
0
0
22 Sep 2024
A survey on secure decentralized optimization and learning
Changxin Liu
Nicola Bastianello
Wei Huo
Yang Shi
Karl H. Johansson
34
1
0
16 Aug 2024
Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity
Qihao Zhou
Haishan Ye
Luo Luo
24
0
0
25 May 2024
FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models
Kai Yi
Georg Meinhardt
Laurent Condat
Peter Richtárik
FedML
32
6
0
14 Mar 2024
On the Convergence of Federated Learning Algorithms without Data Similarity
Ali Beikmohammadi
Sarit Khirirat
Sindri Magnússon
FedML
33
1
0
29 Feb 2024
SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning
Paul Mangold
S. Samsonov
Safwan Labbi
I. Levin
Réda Alami
Alexey Naumov
Eric Moulines
38
1
0
06 Feb 2024
Decomposable Submodular Maximization in Federated Setting
Akbar Rafiey
FedML
22
1
0
31 Jan 2024
Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning
Zhifeng Jiang
Peng Ye
Shiqi He
Wei Wang
Ruichuan Chen
Bo Li
23
2
0
05 Jan 2024
AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms
Rustem Islamov
M. Safaryan
Dan Alistarh
FedML
21
12
0
31 Oct 2023
Distributed Personalized Empirical Risk Minimization
Yuyang Deng
Mohammad Mahdi Kamani
Pouria Mahdavinia
M. Mahdavi
21
4
0
26 Oct 2023
Over-the-Air Federated Learning and Optimization
Jingyang Zhu
Yuanming Shi
Yong Zhou
Chunxiao Jiang
Wei-Neng Chen
Khaled B. Letaief
FedML
23
11
0
16 Oct 2023
Understanding How Consistency Works in Federated Learning via Stage-wise Relaxed Initialization
Yan Sun
Li Shen
Dacheng Tao
FedML
20
14
0
09 Jun 2023
A Lightweight Method for Tackling Unknown Participation Statistics in Federated Averaging
Shiqiang Wang
Mingyue Ji
FedML
30
0
0
06 Jun 2023
Improving Accelerated Federated Learning with Compression and Importance Sampling
Michal Grudzieñ
Grigory Malinovsky
Peter Richtárik
FedML
27
8
0
05 Jun 2023
Explicit Personalization and Local Training: Double Communication Acceleration in Federated Learning
Kai Yi
Laurent Condat
Peter Richtárik
FedML
35
5
0
22 May 2023
DualFL: A Duality-based Federated Learning Algorithm with Communication Acceleration in the General Convex Regime
Jongho Park
Jinchao Xu
FedML
47
1
0
17 May 2023
Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup under Markovian Sampling
Nicolò Dal Fabbro
A. Mitra
George J. Pappas
FedML
33
12
0
14 May 2023
SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
Kfir Y. Levy
Kfir Y. Levy
FedML
43
2
0
09 Apr 2023
Unified analysis of SGD-type methods
Eduard A. Gorbunov
22
2
0
29 Mar 2023
TAMUNA: Doubly Accelerated Distributed Optimization with Local Training, Compression, and Partial Participation
Laurent Condat
Ivan Agarský
Grigory Malinovsky
Peter Richtárik
FedML
22
4
0
20 Feb 2023
Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity
Han Wang
A. Mitra
Hamed Hassani
George J. Pappas
James Anderson
FedML
24
21
0
04 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
30
5
0
30 Jan 2023
An Optimal Algorithm for Strongly Convex Min-min Optimization
Alexander Gasnikov
D. Kovalev
Grigory Malinovsky
24
1
0
29 Dec 2022
Can 5th Generation Local Training Methods Support Client Sampling? Yes!
Michal Grudzieñ
Grigory Malinovsky
Peter Richtárik
17
28
0
29 Dec 2022
Federated Learning with Flexible Control
Shiqiang Wang
Jake B. Perazzone
Mingyue Ji
Kevin S. Chan
FedML
28
17
0
16 Dec 2022
Federated Hypergradient Descent
A. K. Kan
FedML
32
3
0
03 Nov 2022
A Convergence Theory for Federated Average: Beyond Smoothness
Xiaoxiao Li
Zhao-quan Song
Runzhou Tao
Guangyi Zhang
FedML
22
5
0
03 Nov 2022
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
14
6
0
31 Oct 2022
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
A. Maranjyan
M. Safaryan
Peter Richtárik
32
13
0
28 Oct 2022
Coresets for Vertical Federated Learning: Regularized Linear Regression and
K
K
K
-Means Clustering
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
FedML
29
9
0
26 Oct 2022
Provably Doubly Accelerated Federated Learning: The First Theoretically Successful Combination of Local Training and Communication Compression
Laurent Condat
Ivan Agarský
Peter Richtárik
FedML
16
16
0
24 Oct 2022
On the Performance of Gradient Tracking with Local Updates
Edward Duc Hien Nguyen
Sulaiman A. Alghunaim
Kun Yuan
César A. Uribe
35
18
0
10 Oct 2022
Personalized Federated Learning with Communication Compression
El Houcine Bergou
Konstantin Burlachenko
Aritra Dutta
Peter Richtárik
FedML
72
9
0
12 Sep 2022
HammingMesh: A Network Topology for Large-Scale Deep Learning
Torsten Hoefler
Tommaso Bonato
Daniele De Sensi
Salvatore Di Girolamo
Shigang Li
Marco Heddes
Jon Belk
Deepak Goel
Miguel Castro
Steve Scott
3DH
GNN
AI4CE
18
20
0
03 Sep 2022
Federated Learning on Adaptively Weighted Nodes by Bilevel Optimization
Yan Huang
Qihang Lin
N. Street
Stephen Seung-Yeob Baek
FedML
20
9
0
21 Jul 2022
Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning
Grigory Malinovsky
Kai Yi
Peter Richtárik
FedML
29
38
0
09 Jul 2022
Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with Inexact Prox
Abdurakhmon Sadiev
D. Kovalev
Peter Richtárik
17
20
0
08 Jul 2022
Tackling Data Heterogeneity: A New Unified Framework for Decentralized SGD with Sample-induced Topology
Y. Huang
Ying Sun
Zehan Zhu
Changzhi Yan
Jinming Xu
FedML
22
15
0
08 Jul 2022
SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression
Zhize Li
Haoyu Zhao
Boyue Li
Yuejie Chi
FedML
22
41
0
20 Jun 2022
Federated Optimization Algorithms with Random Reshuffling and Gradient Compression
Abdurakhmon Sadiev
Grigory Malinovsky
Eduard A. Gorbunov
Igor Sokolov
Ahmed Khaled
Konstantin Burlachenko
Peter Richtárik
FedML
11
21
0
14 Jun 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
30
16
0
07 Jun 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
24
75
0
27 May 2022
A Communication-Efficient Distributed Gradient Clipping Algorithm for Training Deep Neural Networks
Mingrui Liu
Zhenxun Zhuang
Yunwei Lei
Chunyang Liao
20
16
0
10 May 2022
1
2
Next