Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.03156
Cited By
v1
v2
v3
v4
v5 (latest)
Wasserstein-based fairness interpretability framework for machine learning models
6 November 2020
A. Miroshnikov
Konstandinos Kotsiopoulos
Ryan Franks
Arjun Ravi Kannan
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Wasserstein-based fairness interpretability framework for machine learning models"
9 / 9 papers shown
Title
Enforcing Fairness Where It Matters: An Approach Based on Difference-of-Convex Constraints
Yutian He
Yankun Huang
Yao Yao
Qihang Lin
FaML
55
0
0
18 May 2025
Explainable post-training bias mitigation with distribution-based fairness metrics
Ryan Franks
A. Miroshnikov
78
0
0
01 Apr 2025
OT-Net: A Reusable Neural Optimal Transport Solver
Zezeng Li
Shenghao Li
Lianbao Jin
Na Lei
Zhongxuan Luo
OT
89
4
0
14 Jun 2023
Retiring
Δ
Δ
Δ
DP: New Distribution-Level Metrics for Demographic Parity
Xiaotian Han
Zhimeng Jiang
Hongye Jin
Zirui Liu
Na Zou
Qifan Wang
Helen Zhou
106
4
0
31 Jan 2023
AI Fairness: from Principles to Practice
A. Bateni
Matthew Chan
Ray Eitel-Porter
38
4
0
20 Jul 2022
Model-agnostic bias mitigation methods with regressor distribution control for Wasserstein-based fairness metrics
A. Miroshnikov
Konstandinos Kotsiopoulos
Ryan Franks
Arjun Ravi Kannan
49
5
0
19 Nov 2021
FairCanary: Rapid Continuous Explainable Fairness
Avijit Ghosh
Aalok Shanbhag
Christo Wilson
107
22
0
13 Jun 2021
FiSH: Fair Spatial Hotspots
Deepak P
Sowmya S. Sundaram
69
1
0
01 Jun 2021
Unified Shapley Framework to Explain Prediction Drift
Aalok Shanbhag
A. Ghosh
Josh Rubin
FAtt
FedML
AI4TS
72
3
0
15 Feb 2021
1