ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.03854
  4. Cited By
Graph Kernels: State-of-the-Art and Future Challenges

Graph Kernels: State-of-the-Art and Future Challenges

7 November 2020
Karsten M. Borgwardt
Elisabetta Ghisu
Felipe Llinares-López
Leslie O’Bray
Bastian Alexander Rieck
    AI4TS
ArXivPDFHTML

Papers citing "Graph Kernels: State-of-the-Art and Future Challenges"

50 / 51 papers shown
Title
No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning Datasets
No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning Datasets
Corinna Coupette
Jeremy Wayland
Emily Simons
Bastian Alexander Rieck
76
1
0
04 Feb 2025
Scalable Sobolev IPM for Probability Measures on a Graph
Scalable Sobolev IPM for Probability Measures on a Graph
Tam Le
Truyen V. Nguyen
H. Hino
Kenji Fukumizu
55
0
0
02 Feb 2025
A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
Pau Ferrer-Cid
Jose M. Barcelo-Ordinas
J. García-Vidal
42
2
0
28 Oct 2024
Graph Classification Gaussian Processes via Hodgelet Spectral Features
Graph Classification Gaussian Processes via Hodgelet Spectral Features
Mathieu Alain
So Takao
Xiaowen Dong
Bastian Alexander Rieck
Emmanuel Noutahi
22
1
0
14 Oct 2024
TopER: Topological Embeddings in Graph Representation Learning
TopER: Topological Embeddings in Graph Representation Learning
Astrit Tola
Funmilola Mary Taiwo
Cüneyt Gürcan Akçora
Baris Coskunuzer
28
0
0
02 Oct 2024
TAVRNN: Temporal Attention-enhanced Variational Graph RNN Captures
  Neural Dynamics and Behavior
TAVRNN: Temporal Attention-enhanced Variational Graph RNN Captures Neural Dynamics and Behavior
M. Khajehnejad
Forough Habibollahi
Ahmad Khajehnejad
Brett J. Kagan
Adeel Razi
21
1
0
01 Oct 2024
The GeometricKernels Package: Heat and Matérn Kernels for Geometric
  Learning on Manifolds, Meshes, and Graphs
The GeometricKernels Package: Heat and Matérn Kernels for Geometric Learning on Manifolds, Meshes, and Graphs
P. Mostowsky
Vincent Dutordoir
I. Azangulov
Noémie Jaquier
Michael John Hutchinson
Aditya Ravuri
Leonel Rozo
Alexander Terenin
Viacheslav Borovitskiy
35
5
0
10 Jul 2024
Geodesic Distance Between Graphs: A Spectral Metric for Assessing the
  Stability of Graph Neural Networks
Geodesic Distance Between Graphs: A Spectral Metric for Assessing the Stability of Graph Neural Networks
S. S. Shuvo
Ali Aghdaei
Zhuo Feng
45
0
0
15 Jun 2024
Deep Sketched Output Kernel Regression for Structured Prediction
Deep Sketched Output Kernel Regression for Structured Prediction
T. Ahmad
Junjie Yang
Pierre Laforgue
Florence dÁlché-Buc
UQCV
35
0
0
13 Jun 2024
Graph Vertex Embeddings: Distance, Regularization and Community
  Detection
Graph Vertex Embeddings: Distance, Regularization and Community Detection
Radoslaw Nowak
Adam Malkowski
Daniel Cie'slak
Piotr Sokól
Pawel Wawrzyñski
16
0
0
09 Apr 2024
Weisfeiler-Leman at the margin: When more expressivity matters
Weisfeiler-Leman at the margin: When more expressivity matters
Billy J. Franks
Christopher Morris
A. Velingker
Floris Geerts
50
9
0
12 Feb 2024
Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman
  graph kernels
Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernels
Raphael Carpintero Perez
Sébastien da Veiga
Josselin Garnier
B. Staber
25
4
0
06 Feb 2024
Contrastive Learning for Non-Local Graphs with Multi-Resolution
  Structural Views
Contrastive Learning for Non-Local Graphs with Multi-Resolution Structural Views
Asif Khan
Amos Storkey
22
1
0
19 Aug 2023
Path Neural Networks: Expressive and Accurate Graph Neural Networks
Path Neural Networks: Expressive and Accurate Graph Neural Networks
Gaspard Michel
Giannis Nikolentzos
J. Lutzeyer
Michalis Vazirgiannis
GNN
18
25
0
09 Jun 2023
Fisher Information Embedding for Node and Graph Learning
Fisher Information Embedding for Node and Graph Learning
Dexiong Chen
Paolo Pellizzoni
Karsten M. Borgwardt
GNN
18
2
0
12 May 2023
Sketch In, Sketch Out: Accelerating both Learning and Inference for
  Structured Prediction with Kernels
Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels
T. Ahmad
Luc Brogat-Motte
Pierre Laforgue
Florence dÁlché-Buc
BDL
25
6
0
20 Feb 2023
Curvature Filtrations for Graph Generative Model Evaluation
Curvature Filtrations for Graph Generative Model Evaluation
Joshua Southern
Jeremy Wayland
Michael M. Bronstein
Bastian Alexander Rieck
14
14
0
30 Jan 2023
WL meet VC
WL meet VC
Christopher Morris
Floris Geerts
Jan Tonshoff
Martin Grohe
33
26
0
26 Jan 2023
QESK: Quantum-based Entropic Subtree Kernels for Graph Classification
QESK: Quantum-based Entropic Subtree Kernels for Graph Classification
Lu Bai
Lixin Cui
Edwin R. Hancock
40
0
0
10 Dec 2022
HAQJSK: Hierarchical-Aligned Quantum Jensen-Shannon Kernels for Graph
  Classification
HAQJSK: Hierarchical-Aligned Quantum Jensen-Shannon Kernels for Graph Classification
Lu Bai
Lixin Cui
Yue Wang
Ming Li
Edwin R. Hancock
19
41
0
05 Nov 2022
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph
  Neural Networks
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks
Ching-Yao Chuang
Stefanie Jegelka
OOD
59
34
0
04 Oct 2022
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race
Franka Bause
Nils M. Kriege
CLL
18
6
0
19 Sep 2022
Efficient multi-relational network representation using primes
Efficient multi-relational network representation using primes
K. Bougiatiotis
G. Paliouras
25
1
0
14 Sep 2022
Literature Review: Graph Kernels in Chemoinformatics
Literature Review: Graph Kernels in Chemoinformatics
James Young
9
0
0
09 Aug 2022
SGAT: Simplicial Graph Attention Network
SGAT: Simplicial Graph Attention Network
See Hian Lee
Feng Ji
Wee Peng Tay
62
23
0
24 Jul 2022
TREE-G: Decision Trees Contesting Graph Neural Networks
TREE-G: Decision Trees Contesting Graph Neural Networks
Maya Bechler-Speicher
Amir Globerson
Ran Gilad-Bachrach
25
3
0
06 Jul 2022
Ordered Subgraph Aggregation Networks
Ordered Subgraph Aggregation Networks
Chao Qian
Gaurav Rattan
Floris Geerts
Christopher Morris
Mathias Niepert
38
56
0
22 Jun 2022
Capturing Graphs with Hypo-Elliptic Diffusions
Capturing Graphs with Hypo-Elliptic Diffusions
Csaba Tóth
Darrick Lee
Celia Hacker
Harald Oberhauser
16
12
0
27 May 2022
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Florian Kalinke
Marco Heyden
Edouard Fouché
Klemens Bohm
Klemens Böhm
24
0
0
25 May 2022
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
Nils M. Kriege
8
14
0
22 May 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
38
39
0
25 Mar 2022
Topological Classification in a Wasserstein Distance Based Vector Space
Topological Classification in a Wasserstein Distance Based Vector Space
Tananun Songdechakraiwut
Bryan M. Krause
M. Banks
K. Nourski
B. V. Veen
8
5
0
02 Feb 2022
Multiscale Graph Comparison via the Embedded Laplacian Discrepancy
Multiscale Graph Comparison via the Embedded Laplacian Discrepancy
Edric Tam
David B. Dunson
14
5
0
28 Jan 2022
Weisfeiler and Leman go Machine Learning: The Story so far
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Alexander Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten M. Borgwardt
GNN
35
110
0
18 Dec 2021
TrialGraph: Machine Intelligence Enabled Insight from Graph Modelling of
  Clinical Trials
TrialGraph: Machine Intelligence Enabled Insight from Graph Modelling of Clinical Trials
Christopher Yacoumatos
Stefano Bragaglia
Anshul Kanakia
Nils Svangård
J. Mangion
Claire R. Donoghue
J. Weatherall
F. Khan
K. Shameer
36
3
0
15 Dec 2021
Fast Topological Clustering with Wasserstein Distance
Fast Topological Clustering with Wasserstein Distance
Tananun Songdechakraiwut
Bryan M. Krause
M. Banks
K. Nourski
B. V. Veen
11
4
0
30 Nov 2021
Combining Latent Space and Structured Kernels for Bayesian Optimization
  over Combinatorial Spaces
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces
Aryan Deshwal
J. Doppa
BDL
30
42
0
01 Nov 2021
Graph Filtration Kernels
Graph Filtration Kernels
Till Hendrik Schulz
Pascal Welke
Stefanie Wrobel
17
12
0
22 Oct 2021
EGC2: Enhanced Graph Classification with Easy Graph Compression
EGC2: Enhanced Graph Classification with Easy Graph Compression
Jinyin Chen
Haiyang Xiong
Haibin Zheng
Dunjie Zhang
Jian Andrew Zhang
Mingwei Jia
Yi Liu
AAML
16
15
0
16 Jul 2021
GraphiT: Encoding Graph Structure in Transformers
GraphiT: Encoding Graph Structure in Transformers
Grégoire Mialon
Dexiong Chen
Margot Selosse
Julien Mairal
14
163
0
10 Jun 2021
Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and
  Practical Solutions
Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical Solutions
Leslie O’Bray
Max Horn
Bastian Alexander Rieck
Karsten M. Borgwardt
19
40
0
02 Jun 2021
Modular Design Patterns for Hybrid Learning and Reasoning Systems: a
  taxonomy, patterns and use cases
Modular Design Patterns for Hybrid Learning and Reasoning Systems: a taxonomy, patterns and use cases
M. V. Bekkum
M. D. Boer
F. V. Harmelen
André Meyer-Vitali
A. T. Teije
14
68
0
23 Feb 2021
Topological Graph Neural Networks
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
25
90
0
15 Feb 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
115
0
16 Dec 2020
Provenance Graph Kernel
Provenance Graph Kernel
David Kohan Marzagão
T. D. Huynh
Ayah Helal
Sean Baccas
Luc Moreau
15
1
0
20 Oct 2020
Transfer Learning of Graph Neural Networks with Ego-graph Information
  Maximization
Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization
Qi Zhu
Carl Yang
Yidan Xu
Haonan Wang
Chao Zhang
Jiawei Han
37
115
0
11 Sep 2020
A Hierarchical Transitive-Aligned Graph Kernel for Un-attributed Graphs
A Hierarchical Transitive-Aligned Graph Kernel for Un-attributed Graphs
Lu Bai
Lixin Cui
Edwin R. Hancock
17
8
0
08 Feb 2020
A Kernel Stein Test for Comparing Latent Variable Models
A Kernel Stein Test for Comparing Latent Variable Models
Heishiro Kanagawa
Wittawat Jitkrittum
Lester W. Mackey
Kenji Fukumizu
A. Gretton
8
12
0
01 Jul 2019
Graph Kernels: A Survey
Graph Kernels: A Survey
Giannis Nikolentzos
Giannis Siglidis
Michalis Vazirgiannis
19
117
0
27 Apr 2019
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
162
1,775
0
02 Mar 2017
12
Next