ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.08649
  4. Cited By
Leveraging the Variance of Return Sequences for Exploration Policy

Leveraging the Variance of Return Sequences for Exploration Policy

17 November 2020
Zerong Xi
G. Sukthankar
ArXivPDFHTML

Papers citing "Leveraging the Variance of Return Sequences for Exploration Policy"

17 / 17 papers shown
Title
Information-Directed Exploration for Deep Reinforcement Learning
Information-Directed Exploration for Deep Reinforcement Learning
Nikolay Nikolov
Johannes Kirschner
Felix Berkenkamp
Andreas Krause
36
69
0
18 Dec 2018
Provably Efficient Maximum Entropy Exploration
Provably Efficient Maximum Entropy Exploration
Elad Hazan
Sham Kakade
Karan Singh
A. V. Soest
36
295
0
06 Dec 2018
Distributional Reinforcement Learning with Quantile Regression
Distributional Reinforcement Learning with Quantile Regression
Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
61
753
0
27 Oct 2017
A Distributional Perspective on Reinforcement Learning
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
57
1,497
0
21 Jul 2017
Noisy Networks for Exploration
Noisy Networks for Exploration
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
...
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
45
890
0
30 Jun 2017
Parameter Space Noise for Exploration
Parameter Space Noise for Exploration
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
38
594
0
06 Jun 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRM
SSL
87
2,416
0
15 May 2017
Count-Based Exploration with Neural Density Models
Count-Based Exploration with Neural Density Models
Georg Ostrovski
Marc G. Bellemare
Aaron van den Oord
Rémi Munos
59
616
0
03 Mar 2017
Reinforcement Learning with Deep Energy-Based Policies
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
35
1,329
0
27 Feb 2017
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement
  Learning
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
69
764
0
15 Nov 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
136
1,465
0
06 Jun 2016
Deep Exploration via Bootstrapped DQN
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
38
1,302
0
15 Feb 2016
Dueling Network Architectures for Deep Reinforcement Learning
Dueling Network Architectures for Deep Reinforcement Learning
Ziyun Wang
Tom Schaul
Matteo Hessel
H. V. Hasselt
Marc Lanctot
Nando de Freitas
OffRL
50
3,742
0
20 Nov 2015
Prioritized Experience Replay
Prioritized Experience Replay
Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
OffRL
164
3,777
0
18 Nov 2015
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
73
7,590
0
22 Sep 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
104
149,474
0
22 Dec 2014
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
38
2,989
0
19 Jul 2012
1