Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.11985
Cited By
Adam
+
^+
+
: A Stochastic Method with Adaptive Variance Reduction
24 November 2020
Mingrui Liu
Wei Zhang
Francesco Orabona
Tianbao Yang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adam$^+$: A Stochastic Method with Adaptive Variance Reduction"
16 / 16 papers shown
Title
An Adaptive Method Stabilizing Activations for Enhanced Generalization
Hyunseok Seung
Jaewoo Lee
Hyunsuk Ko
ODL
21
0
0
10 Jun 2025
Protocol Models: Scaling Decentralized Training with Communication-Efficient Model Parallelism
Sameera Ramasinghe
Thalaiyasingam Ajanthan
Gil Avraham
Yan Zuo
Alexander Long
GNN
79
0
0
02 Jun 2025
Temporal Context Consistency Above All: Enhancing Long-Term Anticipation by Learning and Enforcing Temporal Constraints
Alberto Maté
Mariella Dimiccoli
AI4TS
82
0
0
27 Dec 2024
Fast and Accurate Neural Rendering Using Semi-Gradients
In-Young Cho
Jaewoong Cho
52
0
0
14 Oct 2024
Dynamic Estimation of Learning Rates Using a Non-Linear Autoregressive Model
Ramin Okhrati
27
0
0
13 Oct 2024
Gradient-Free Method for Heavily Constrained Nonconvex Optimization
Wanli Shi
Hongchang Gao
Bin Gu
88
5
0
31 Aug 2024
The Implicit Bias of Adam on Separable Data
Chenyang Zhang
Difan Zou
Yuan Cao
AI4CE
94
9
0
15 Jun 2024
PanBench: Towards High-Resolution and High-Performance Pansharpening
Shiying Wang
Xuechao Zou
Kai Li
Junliang Xing
Pin Tao
88
1
0
20 Nov 2023
Multi-modal Segment Assemblage Network for Ad Video Editing with Importance-Coherence Reward
Yunlong Tang
Siting Xu
Teng Wang
Qin Lin
Qinglin Lu
Feng Zheng
VOS
100
11
0
25 Sep 2022
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
Xingyu Xie
Pan Zhou
Huan Li
Zhouchen Lin
Shuicheng Yan
ODL
94
169
0
13 Aug 2022
A Novel Convergence Analysis for Algorithms of the Adam Family
Zhishuai Guo
Yi Tian Xu
W. Yin
Rong Jin
Tianbao Yang
88
49
0
07 Dec 2021
SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients
Feihu Huang
Junyi Li
Heng-Chiao Huang
ODL
84
42
0
15 Jun 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
61
18
0
18 Feb 2021
Variance Reduction on General Adaptive Stochastic Mirror Descent
Wenjie Li
Zhanyu Wang
Yichen Zhang
Guang Cheng
73
4
0
26 Dec 2020
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
217
168
0
03 Jul 2020
Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity
J.N. Zhang
Hongzhou Lin
Subhro Das
S. Sra
Ali Jadbabaie
32
1
0
08 Jun 2020
1