Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.14115
Cited By
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
28 November 2020
Johannes Klicpera
Shankari Giri
Johannes T. Margraf
Stephan Günnemann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules"
50 / 63 papers shown
Title
Uncertainty Quantification in Graph Neural Networks with Shallow Ensembles
Tirtha Vinchurkar
Kareem Abdelmaqsoud
John R. Kitchin
AI4CE
93
0
0
17 Apr 2025
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
Equivariant Masked Position Prediction for Efficient Molecular Representation
Junyi An
C. Qu
Yun-Fei Shi
XinHao Liu
Qianwei Tang
Fenglei Cao
Yuan Qi
37
0
0
12 Feb 2025
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
Daniel Levy
Siba Smarak Panigrahi
Sékou-Oumar Kaba
Qiang Zhu
Kin Long Kelvin Lee
Mikhail Galkin
Santiago Miret
Siamak Ravanbakhsh
201
11
0
05 Feb 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
50
0
0
30 Dec 2024
Chemistry-Inspired Diffusion with Non-Differentiable Guidance
Yuchen Shen
Chenhao Zhang
Sijie Fu
Chenghui Zhou
Newell Washburn
Barnabás Póczos
50
0
0
09 Oct 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
J. Zavadlav
DiffM
70
6
0
28 Aug 2024
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
42
1
0
02 Jul 2024
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
Adeesh Kolluru
John R. Kitchin
DiffM
42
4
0
07 May 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
28
5
0
07 Feb 2024
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
33
2
0
07 Feb 2024
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
Xuan Li
Zhanke Zhou
Jiangchao Yao
Yu Rong
Lu Zhang
Bo Han
31
3
0
02 Nov 2023
Latent Conservative Objective Models for Data-Driven Crystal Structure Prediction
Han Qi
Xinyang Geng
Stefano Rando
Iku Ohama
Aviral Kumar
Sergey Levine
DiffM
42
2
0
16 Oct 2023
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
32
0
0
10 Oct 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
24
19
0
03 Oct 2023
Beyond MD17: the reactive xxMD dataset
Zihan Pengmei
Junyu Liu
Yinan Shu
21
6
0
22 Aug 2023
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffM
AI4CE
42
25
0
20 Jul 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
22
13
0
02 Jun 2023
3D Molecular Geometry Analysis with 2D Graphs
Zhao Xu
Yaochen Xie
Youzhi Luo
Xuan Zhang
Xinyi Xu
Meng Liu
Kaleb Dickerson
Cheng Deng
Maho Nakata
Shuiwang Ji
19
1
0
01 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
29
54
0
28 Apr 2023
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
27
48
0
20 Apr 2023
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry via positional denoising
Hyeonsu Kim
Jeheon Woo
Seonghwan Kim
Seokhyun Moon
Jun Hyeong Kim
Woo Youn Kim
AI4CE
33
6
0
28 Mar 2023
Geometric Deep Learning for Molecular Crystal Structure Prediction
Michael Kilgour
J. Rogal
M. Tuckerman
13
16
0
17 Mar 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
26
10
0
27 Feb 2023
GraphVF: Controllable Protein-Specific 3D Molecule Generation with Variational Flow
Fangce Sun
Zhihao Zhan
Hongyu Guo
Ming Zhang
Jian Tang
26
6
0
23 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
28
79
0
07 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
28
8
0
06 Feb 2023
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
J. Zavadlav
27
21
0
15 Dec 2022
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
29
5
0
12 Dec 2022
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
27
11
0
30 Nov 2022
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
26
44
0
29 Nov 2022
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
27
2
0
14 Nov 2022
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science
Santiago Miret
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
36
19
0
31 Oct 2022
Equivariant Energy-Guided SDE for Inverse Molecular Design
Fan Bao
Min Zhao
Zhongkai Hao
Pei‐Yun Li
Chongxuan Li
Jun Zhu
DiffM
187
63
0
30 Sep 2022
Periodic Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Yi Liu
Yu-Ching Lin
Shuiwang Ji
AI4TS
88
84
0
23 Sep 2022
Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering
Lipichanda Goswami
Manoj Deka
Mohendra Roy
AI4CE
34
19
0
15 Sep 2022
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
39
370
0
05 Aug 2022
Edge Direction-invariant Graph Neural Networks for Molecular Dipole Moments Prediction
Yang Jeong Park
GNN
20
1
0
26 Jun 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
38
89
0
17 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
38
441
0
15 Jun 2022
Discovering and Explaining the Representation Bottleneck of Graph Neural Networks from Multi-order Interactions
Fang Wu
Siyuan Li
Lirong Wu
Dragomir R. Radev
Stan Z. Li
27
2
0
15 May 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
33
66
0
06 Apr 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
28
86
0
28 Mar 2022
Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
Anuroop Sriram
Abhishek Das
Brandon M. Wood
Siddharth Goyal
C. L. Zitnick
AI4CE
27
27
0
18 Mar 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni de Fabritiis
AI4CE
29
184
0
05 Feb 2022
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
18
53
0
06 Dec 2021
Geometric Transformer for End-to-End Molecule Properties Prediction
Yoni Choukroun
Lior Wolf
AI4CE
ViT
19
16
0
26 Oct 2021
Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations
Keir Adams
L. Pattanaik
Connor W. Coley
21
32
0
08 Oct 2021
1
2
Next