Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.00152
Cited By
Every Model Learned by Gradient Descent Is Approximately a Kernel Machine
30 November 2020
Pedro M. Domingos
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Every Model Learned by Gradient Descent Is Approximately a Kernel Machine"
14 / 14 papers shown
Title
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
45
1
0
17 Sep 2024
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
28
12
0
21 Oct 2022
On the optimization and generalization of overparameterized implicit neural networks
Tianxiang Gao
Hongyang Gao
MLT
AI4CE
19
3
0
30 Sep 2022
Interpretable (not just posthoc-explainable) medical claims modeling for discharge placement to prevent avoidable all-cause readmissions or death
Joshua C. Chang
Ted L. Chang
Carson C. Chow
R. Mahajan
Sonya Mahajan
Joe Maisog
Shashaank Vattikuti
Hongjing Xia
FAtt
OOD
27
0
0
28 Aug 2022
Efficient Augmentation for Imbalanced Deep Learning
Damien Dablain
C. Bellinger
Bartosz Krawczyk
Nitesh V. Chawla
22
7
0
13 Jul 2022
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
16
39
0
14 Jun 2022
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
17
18
0
11 Nov 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
C. Pehlevan
MLT
13
74
0
29 Oct 2021
New Insights into Graph Convolutional Networks using Neural Tangent Kernels
Mahalakshmi Sabanayagam
P. Esser
D. Ghoshdastidar
21
6
0
08 Oct 2021
Associative Memories via Predictive Coding
Tommaso Salvatori
Yuhang Song
Yujian Hong
Simon Frieder
Lei Sha
Zhenghua Xu
Rafal Bogacz
Thomas Lukasiewicz
16
61
0
16 Sep 2021
PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them
Patrick Lewis
Yuxiang Wu
Linqing Liu
Pasquale Minervini
Heinrich Küttler
Aleksandra Piktus
Pontus Stenetorp
Sebastian Riedel
RALM
23
228
0
13 Feb 2021
Data-driven geophysical forecasting: Simple, low-cost, and accurate baselines with kernel methods
B. Hamzi
R. Maulik
H. Owhadi
AI4TS
9
28
0
13 Feb 2021
Online Limited Memory Neural-Linear Bandits with Likelihood Matching
Ofir Nabati
Tom Zahavy
Shie Mannor
19
18
0
07 Feb 2021
AdaSwarm: Augmenting Gradient-Based optimizers in Deep Learning with Swarm Intelligence
Rohan Mohapatra
Snehanshu Saha
C. Coello
Anwesh Bhattacharya
S. Dhavala
S. Saha
ODL
13
21
0
19 May 2020
1