Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.00165
Cited By
An accelerated hybrid data-driven/model-based approach for poroelasticity problems with multi-fidelity multi-physics data
30 November 2020
B. Bahmani
WaiChing Sun
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"An accelerated hybrid data-driven/model-based approach for poroelasticity problems with multi-fidelity multi-physics data"
6 / 6 papers shown
Title
A review on data-driven constitutive laws for solids
J. Fuhg
G. A. Padmanabha
N. Bouklas
B. Bahmani
WaiChing Sun
Nikolaos N. Vlassis
Moritz Flaschel
P. Carrara
L. Lorenzis
AI4CE
AILaw
84
43
0
06 May 2024
A physics-informed deep neural network for surrogate modeling in classical elasto-plasticity
M. Eghbalian
M. Pouragha
R. Wan
AI4CE
PINN
34
47
0
26 Apr 2022
Manifold embedding data-driven mechanics
B. Bahmani
WaiChing Sun
PINN
AI4CE
68
9
0
18 Dec 2021
A Physics Informed Neural Network Approach to Solution and Identification of Biharmonic Equations of Elasticity
M. Vahab
E. Haghighat
M. Khaleghi
N. Khalili
PINN
120
45
0
16 Aug 2021
Data-driven discovery of interpretable causal relations for deep learning material laws with uncertainty propagation
Xiao Sun
B. Bahmani
Nikolaos N. Vlassis
WaiChing Sun
Yanxun Xu
CML
AI4CE
116
26
0
20 May 2021
Billion-scale similarity search with GPUs
Jeff Johnson
Matthijs Douze
Hervé Jégou
383
3,750
0
28 Feb 2017
1