ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.00173
  4. Cited By
Graph Generative Adversarial Networks for Sparse Data Generation in High
  Energy Physics

Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics

30 November 2020
Raghav Kansal
Javier Mauricio Duarte
B. Orzari
T. Tomei
M. Pierini
M. Touranakou
J. Vlimant
Dimitrios Gunopoulos
    GAN
ArXivPDFHTML

Papers citing "Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics"

14 / 14 papers shown
Title
Deep Generative Models for Detector Signature Simulation: A Taxonomic
  Review
Deep Generative Models for Detector Signature Simulation: A Taxonomic Review
Baran Hashemi
Claudius Krause
30
16
0
15 Dec 2023
Versatile Energy-Based Probabilistic Models for High Energy Physics
Versatile Energy-Based Probabilistic Models for High Energy Physics
Taoli Cheng
Aaron Courville
DiffM
17
0
0
01 Feb 2023
Lorentz group equivariant autoencoders
Lorentz group equivariant autoencoders
Zichun Hao
Raghav Kansal
Javier Mauricio Duarte
N. Chernyavskaya
BDL
DRL
AI4CE
26
23
0
14 Dec 2022
New directions for surrogate models and differentiable programming for
  High Energy Physics detector simulation
New directions for surrogate models and differentiable programming for High Energy Physics detector simulation
Andreas Adelmann
W. Hopkins
E. Kourlitis
Michael Kagan
Gregor Kasieczka
...
David Shih
Vinicius Mikuni
Benjamin Nachman
K. Pedro
D. Winklehner
17
29
0
15 Mar 2022
Particle-based Fast Jet Simulation at the LHC with Variational
  Autoencoders
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
M. Touranakou
N. Chernyavskaya
Javier Mauricio Duarte
Dimitrios Gunopulos
Raghav Kansal
B. Orzari
M. Pierini
T. Tomei
J. Vlimant
17
17
0
01 Mar 2022
Shared Data and Algorithms for Deep Learning in Fundamental Physics
Shared Data and Algorithms for Deep Learning in Fundamental Physics
L. Benato
E. Buhmann
M. Erdmann
P. Fackeldey
J. Glombitza
...
T. Kuhr
J. Steinheimer
H. Stocker
Tilman Plehn
K. Zhou
PINN
OOD
24
15
0
01 Jul 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
25
81
0
09 Jun 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
10
27
0
01 Jun 2021
Nanosecond machine learning event classification with boosted decision
  trees in FPGA for high energy physics
Nanosecond machine learning event classification with boosted decision trees in FPGA for high energy physics
Tae Min Hong
B. Carlson
Brandon Eubanks
Stephen Racz
Stephen Roche
J. Stelzer
Daniel C. Stumpp
18
23
0
07 Apr 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
19
151
0
02 Feb 2021
MLPF: Efficient machine-learned particle-flow reconstruction using graph
  neural networks
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
J. Pata
Javier Mauricio Duarte
J. Vlimant
M. Pierini
M. Spiropulu
107
76
0
21 Jan 2021
A Practical Tutorial on Graph Neural Networks
A Practical Tutorial on Graph Neural Networks
I. Ward
J. Joyner
C. Lickfold
Yulan Guo
Bennamoun
GNN
AI4CE
22
12
0
11 Oct 2020
Fast inference of deep neural networks in FPGAs for particle physics
Fast inference of deep neural networks in FPGAs for particle physics
Javier Mauricio Duarte
Song Han
Philip C. Harris
S. Jindariani
E. Kreinar
...
J. Ngadiuba
M. Pierini
R. Rivera
N. Tran
Zhenbin Wu
AI4CE
75
386
0
16 Apr 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
1