Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.01791
Cited By
FAT: Federated Adversarial Training
3 December 2020
Giulio Zizzo
Ambrish Rawat
M. Sinn
Beat Buesser
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FAT: Federated Adversarial Training"
21 / 21 papers shown
Title
Central limit theorems for vector-valued composite functionals with smoothing and applications
Huhui Chen
Darinka Dentcheva
Yang Lin
Gregory J. Stock
48
3
0
26 Dec 2024
Adversarial Training: A Survey
Mengnan Zhao
Lihe Zhang
Jingwen Ye
Huchuan Lu
Baocai Yin
Xinchao Wang
AAML
28
0
0
19 Oct 2024
FedProphet: Memory-Efficient Federated Adversarial Training via Robust and Consistent Cascade Learning
Minxue Tang
Yitu Wang
Jingyang Zhang
Louis DiValentin
Aolin Ding
Amin Hass
Yiran Chen
Hai "Helen" Li
FedML
AAML
19
0
0
12 Sep 2024
Logit Calibration and Feature Contrast for Robust Federated Learning on Non-IID Data
Yu Qiao
Chaoning Zhang
Apurba Adhikary
Choong Seon Hong
FedML
33
7
0
10 Apr 2024
Towards Robust Federated Learning via Logits Calibration on Non-IID Data
Yu Qiao
Apurba Adhikary
Chaoning Zhang
Choong Seon Hong
FedML
37
8
0
05 Mar 2024
Adversarial Robustness Unhardening via Backdoor Attacks in Federated Learning
Taejin Kim
Jiarui Li
Shubhranshu Singh
Nikhil Madaan
Carlee Joe-Wong
FedML
12
1
0
17 Oct 2023
Improving Machine Learning Robustness via Adversarial Training
Long Dang
T. Hapuarachchi
Kaiqi Xiong
Jing Lin
OOD
AAML
33
2
0
22 Sep 2023
Secure Federated Learning against Model Poisoning Attacks via Client Filtering
D. Yaldiz
Tuo Zhang
Salman Avestimehr
AAML
FedML
16
13
0
31 Mar 2023
Combating Exacerbated Heterogeneity for Robust Models in Federated Learning
Jianing Zhu
Jiangchao Yao
Tongliang Liu
Quanming Yao
Jianliang Xu
Bo Han
FedML
38
5
0
01 Mar 2023
Delving into the Adversarial Robustness of Federated Learning
Jie M. Zhang
Bo-wen Li
Chen Chen
Lingjuan Lyu
Shuang Wu
Shouhong Ding
Chao Wu
FedML
35
34
0
19 Feb 2023
Robust Learning Protocol for Federated Tumor Segmentation Challenge
Ambrish Rawat
Giulio Zizzo
S. Kadhe
J. Epperlein
S. Braghin
FedML
19
3
0
16 Dec 2022
Characterizing Internal Evasion Attacks in Federated Learning
Taejin Kim
Shubhranshu Singh
Nikhil Madaan
Carlee Joe-Wong
FedML
26
9
0
17 Sep 2022
FADE: Enabling Federated Adversarial Training on Heterogeneous Resource-Constrained Edge Devices
Minxue Tang
Jianyi Zhang
Mingyuan Ma
Louis DiValentin
Aolin Ding
Amin Hassanzadeh
H. Li
Yiran Chen
FedML
13
0
0
08 Sep 2022
Federated Adversarial Learning: A Framework with Convergence Analysis
Xiaoxiao Li
Zhao-quan Song
Jiaming Yang
FedML
27
19
0
07 Aug 2022
Certified Robustness in Federated Learning
Motasem Alfarra
Juan C. Pérez
Egor Shulgin
Peter Richtárik
Bernard Ghanem
AAML
FedML
18
7
0
06 Jun 2022
Federated Adversarial Training with Transformers
Ahmed Aldahdooh
W. Hamidouche
Olivier Déforges
FedML
ViT
20
2
0
05 Jun 2022
Federated Robustness Propagation: Sharing Robustness in Heterogeneous Federated Learning
Junyuan Hong
Haotao Wang
Zhangyang Wang
Jiayu Zhou
FedML
21
16
0
18 Jun 2021
Adversarial training in communication constrained federated learning
Devansh Shah
Parijat Dube
Supriyo Chakraborty
Ashish Verma
FedML
19
34
0
01 Mar 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
Adversarial Robustness through Bias Variance Decomposition: A New Perspective for Federated Learning
Yao Zhou
Jun Wu
Haixun Wang
Jingrui He
AAML
FedML
23
26
0
18 Sep 2020
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
1