ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.02296
  4. Cited By
Generative Capacity of Probabilistic Protein Sequence Models

Generative Capacity of Probabilistic Protein Sequence Models

3 December 2020
Francisco McGee
Quentin Novinger
R. Levy
Vincenzo Carnevale
A. Haldane
ArXivPDFHTML

Papers citing "Generative Capacity of Probabilistic Protein Sequence Models"

7 / 7 papers shown
Title
Protein Large Language Models: A Comprehensive Survey
Protein Large Language Models: A Comprehensive Survey
Yijia Xiao
Wanjia Zhao
Junkai Zhang
Yiqiao Jin
Han Zhang
...
Xiao Luo
Yu-Jie Zhang
James Y. Zou
Y. Sun
Wei Wang
LM&MA
AI4CE
54
3
0
21 Feb 2025
Computational design of target-specific linear peptide binders with
  TransformerBeta
Computational design of target-specific linear peptide binders with TransformerBeta
Haowen Zhao
Francesco A. Aprile
Barbara Bravi
29
0
0
07 Oct 2024
Exploring the Protein Sequence Space with Global Generative Models
Exploring the Protein Sequence Space with Global Generative Models
S. Romero-Romero
Sebastian Lindner
Noelia Ferruz
27
5
0
03 May 2023
Diffusing Gaussian Mixtures for Generating Categorical Data
Diffusing Gaussian Mixtures for Generating Categorical Data
Florence Regol
Mark J. Coates
DiffM
28
5
0
08 Mar 2023
Generative power of a protein language model trained on multiple
  sequence alignments
Generative power of a protein language model trained on multiple sequence alignments
Damiano Sgarbossa
Umberto Lupo
Anne-Florence Bitbol
19
32
0
14 Apr 2022
Protein language models trained on multiple sequence alignments learn
  phylogenetic relationships
Protein language models trained on multiple sequence alignments learn phylogenetic relationships
Umberto Lupo
Damiano Sgarbossa
Anne-Florence Bitbol
27
34
0
29 Mar 2022
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
1