Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.04002
Cited By
Stochastic optimization with momentum: convergence, fluctuations, and traps avoidance
7 December 2020
Anas Barakat
Pascal Bianchi
W. Hachem
S. Schechtman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic optimization with momentum: convergence, fluctuations, and traps avoidance"
10 / 10 papers shown
Title
Sharp higher order convergence rates for the Adam optimizer
Steffen Dereich
Arnulf Jentzen
Adrian Riekert
ODL
61
0
0
28 Apr 2025
High-dimensional scaling limits and fluctuations of online least-squares SGD with smooth covariance
Krishnakumar Balasubramanian
Promit Ghosal
Ye He
30
5
0
03 Apr 2023
Statistical Inference for Linear Functionals of Online SGD in High-dimensional Linear Regression
Bhavya Agrawalla
Krishnakumar Balasubramanian
Promit Ghosal
23
2
0
20 Feb 2023
On the Algorithmic Stability and Generalization of Adaptive Optimization Methods
Han Nguyen
Hai Pham
Sashank J. Reddi
Barnabás Póczos
ODL
AI4CE
17
2
0
08 Nov 2022
Efficiency Ordering of Stochastic Gradient Descent
Jie Hu
Vishwaraj Doshi
Do Young Eun
31
6
0
15 Sep 2022
Stable Anderson Acceleration for Deep Learning
Massimiliano Lupo Pasini
Junqi Yin
Viktor Reshniak
M. Stoyanov
15
4
0
26 Oct 2021
Stochastic Subgradient Descent on a Generic Definable Function Converges to a Minimizer
S. Schechtman
22
1
0
06 Sep 2021
A new regret analysis for Adam-type algorithms
Ahmet Alacaoglu
Yura Malitsky
P. Mertikopoulos
V. Cevher
ODL
48
42
0
21 Mar 2020
A Simple Convergence Proof of Adam and Adagrad
Alexandre Défossez
Léon Bottou
Francis R. Bach
Nicolas Usunier
56
143
0
05 Mar 2020
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
105
1,152
0
04 Mar 2015
1