ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04505
  4. Cited By
Gibbs posterior concentration rates under sub-exponential type losses
v1v2v3v4v5v6 (latest)

Gibbs posterior concentration rates under sub-exponential type losses

8 December 2020
Nicholas Syring
Ryan Martin
ArXiv (abs)PDFHTML

Papers citing "Gibbs posterior concentration rates under sub-exponential type losses"

16 / 16 papers shown
Title
Predictive performance of power posteriors
Predictive performance of power posteriors
Yann McLatchie
Edwin Fong
David T. Frazier
Jeremias Knoblauch
56
2
0
16 Aug 2024
Weighted Particle-Based Optimization for Efficient Generalized Posterior
  Calibration
Weighted Particle-Based Optimization for Efficient Generalized Posterior Calibration
Masahiro Tanaka
75
0
0
08 May 2024
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Masahiro Tanaka
98
2
0
25 Apr 2024
Valid and efficient imprecise-probabilistic inference with partial
  priors, III. Marginalization
Valid and efficient imprecise-probabilistic inference with partial priors, III. Marginalization
Ryan Martin
93
9
0
23 Sep 2023
Empirical Bayes inference in sparse high-dimensional generalized linear
  models
Empirical Bayes inference in sparse high-dimensional generalized linear models
Yiqi Tang
Ryan Martin
90
3
0
14 Mar 2023
Valid and efficient imprecise-probabilistic inference with partial
  priors, II. General framework
Valid and efficient imprecise-probabilistic inference with partial priors, II. General framework
Ryan Martin
85
16
0
26 Nov 2022
Sampling algorithms in statistical physics: a guide for statistics and
  machine learning
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
57
7
0
09 Aug 2022
Statistical inference of random graphs with a surrogate likelihood
  function
Statistical inference of random graphs with a surrogate likelihood function
Dingbo Wu
Fangzheng Xie
70
2
0
04 Jul 2022
On the Computational Complexity of Metropolis-Adjusted Langevin
  Algorithms for Bayesian Posterior Sampling
On the Computational Complexity of Metropolis-Adjusted Langevin Algorithms for Bayesian Posterior Sampling
Rong Tang
Yun Yang
65
5
0
13 Jun 2022
Deep Bootstrap for Bayesian Inference
Deep Bootstrap for Bayesian Inference
Lizhen Nie
Veronika Rockova
UQCVBDL
179
3
0
30 May 2022
Bernstein - von Mises theorem and misspecified models: a review
Bernstein - von Mises theorem and misspecified models: a review
N. Bochkina
74
9
0
28 Apr 2022
User-friendly introduction to PAC-Bayes bounds
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
193
206
0
21 Oct 2021
Gibbs posterior inference on a Levy density under discrete sampling
Gibbs posterior inference on a Levy density under discrete sampling
Zhe Wang
Ryan Martin
80
4
0
14 Sep 2021
Calibrating generalized predictive distributions
Calibrating generalized predictive distributions
Pei-Shien Wu
Ryan Martin
100
8
0
04 Jul 2021
Posterior consistency for the spectral density of non-Gaussian
  stationary time series
Posterior consistency for the spectral density of non-Gaussian stationary time series
Yifu Tang
Claudia Kirch
J. Lee
R. Meyer
105
2
0
01 Mar 2021
Gibbs posterior inference on multivariate quantiles
Gibbs posterior inference on multivariate quantiles
Indrabati Bhattacharya
Ryan Martin
118
21
0
03 Feb 2020
1