ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04718
6
51

Canonical Capsules: Self-Supervised Capsules in Canonical Pose

8 December 2020
Weiwei Sun
Andrea Tagliasacchi
Boyang Deng
S. Sabour
S. Yazdani
Geoffrey E. Hinton
K. M. Yi
    3DPC
ArXivPDFHTML
Abstract

We propose a self-supervised capsule architecture for 3D point clouds. We compute capsule decompositions of objects through permutation-equivariant attention, and self-supervise the process by training with pairs of randomly rotated objects. Our key idea is to aggregate the attention masks into semantic keypoints, and use these to supervise a decomposition that satisfies the capsule invariance/equivariance properties. This not only enables the training of a semantically consistent decomposition, but also allows us to learn a canonicalization operation that enables object-centric reasoning. To train our neural network we require neither classification labels nor manually-aligned training datasets. Yet, by learning an object-centric representation in a self-supervised manner, our method outperforms the state-of-the-art on 3D point cloud reconstruction, canonicalization, and unsupervised classification.

View on arXiv
Comments on this paper