ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.07504
  4. Cited By
Improving Video Instance Segmentation by Light-weight Temporal
  Uncertainty Estimates

Improving Video Instance Segmentation by Light-weight Temporal Uncertainty Estimates

14 December 2020
Kira Maag
Matthias Rottmann
Serin Varghese
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
    UQCV
ArXivPDFHTML

Papers citing "Improving Video Instance Segmentation by Light-weight Temporal Uncertainty Estimates"

13 / 13 papers shown
Title
Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models -
Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models -
Laura Fieback
Nishilkumar Balar
Jakob Spiegelberg
Hanno Gottschalk
MLLM
VLM
78
0
0
16 Apr 2025
Uncertainty and Prediction Quality Estimation for Semantic Segmentation
  via Graph Neural Networks
Uncertainty and Prediction Quality Estimation for Semantic Segmentation via Graph Neural Networks
Edgar Heinert
Stephan Tilgner
Timo Palm
Matthias Rottmann
UQCV
36
0
0
17 Sep 2024
UVIS: Unsupervised Video Instance Segmentation
UVIS: Unsupervised Video Instance Segmentation
Shuaiyi Huang
Saksham Suri
Kamal Gupta
Sai Saketh Rambhatla
Ser-Nam Lim
Abhinav Shrivastava
VLM
29
3
0
11 Jun 2024
MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
Laura Fieback
Jakob Spiegelberg
Hanno Gottschalk
MLLM
57
5
0
29 May 2024
What is Point Supervision Worth in Video Instance Segmentation?
What is Point Supervision Worth in Video Instance Segmentation?
Shuaiyi Huang
De-An Huang
Zhiding Yu
Shiyi Lan
Subhashree Radhakrishnan
Jose M. Alvarez
Abhinav Shrivastava
A. Anandkumar
VOS
27
3
0
01 Apr 2024
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks
  applied to Out-of-Distribution Segmentation
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks applied to Out-of-Distribution Segmentation
Kira Maag
Tobias Riedlinger
UQCV
32
7
0
13 Mar 2023
Two Video Data Sets for Tracking and Retrieval of Out of Distribution
  Objects
Two Video Data Sets for Tracking and Retrieval of Out of Distribution Objects
Kira Maag
Robin Shing Moon Chan
Svenja Uhlemeyer
K. Kowol
Hanno Gottschalk
30
19
0
05 Oct 2022
False Negative Reduction in Semantic Segmentation under Domain Shift
  using Depth Estimation
False Negative Reduction in Semantic Segmentation under Domain Shift using Depth Estimation
Kira Maag
Matthias Rottmann
23
3
0
07 Jul 2022
Probabilistic Representations for Video Contrastive Learning
Probabilistic Representations for Video Contrastive Learning
Jungin Park
Jiyoung Lee
Ig-Jae Kim
K. Sohn
SSL
23
43
0
08 Apr 2022
Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
  Detectors
Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
Hanno Gottschalk
BDL
UQCV
8
12
0
09 Jul 2021
False Negative Reduction in Video Instance Segmentation using
  Uncertainty Estimates
False Negative Reduction in Video Instance Segmentation using Uncertainty Estimates
Kira Maag
UQCV
15
6
0
28 Jun 2021
Towards Real-Time Multi-Object Tracking
Towards Real-Time Multi-Object Tracking
Zhongdao Wang
Liang Zheng
Yixuan Liu
Yali Li
Shengjin Wang
VOT
247
854
0
27 Sep 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
282
9,136
0
06 Jun 2015
1