Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.07690
Cited By
A PAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks
14 December 2020
Renjie Liao
R. Urtasun
R. Zemel
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A PAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks"
20 / 20 papers shown
Title
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
57
1
0
08 Nov 2023
Sharpness-Aware Graph Collaborative Filtering
Huiyuan Chen
Chin-Chia Michael Yeh
Yujie Fan
Yan Zheng
Junpeng Wang
Vivian Lai
Mahashweta Das
Hao Yang
26
5
0
18 Jul 2023
A graphon-signal analysis of graph neural networks
Ron Levie
26
17
0
25 May 2023
Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion
Haotian Ju
Dongyue Li
Aneesh Sharma
Hongyang R. Zhang
23
40
0
09 Feb 2023
Adversarial Weight Perturbation Improves Generalization in Graph Neural Networks
Yihan Wu
Aleksandar Bojchevski
Heng Huang
AAML
34
30
0
09 Dec 2022
Provably expressive temporal graph networks
Amauri Souza
Diego Mesquita
Samuel Kaski
Vikas K. Garg
89
54
0
29 Sep 2022
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
33
68
0
16 Apr 2022
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
19
2
0
04 Feb 2022
Debiased Graph Neural Networks with Agnostic Label Selection Bias
Shaohua Fan
Xiao Wang
Chuan Shi
Kun Kuang
Nian Liu
Bai Wang
AI4CE
36
38
0
19 Jan 2022
Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural Networks
P. Esser
L. C. Vankadara
D. Ghoshdastidar
28
53
0
07 Dec 2021
Multi-fidelity Stability for Graph Representation Learning
Yihan He
Joan Bruna
17
0
0
25 Nov 2021
Generalizing Graph Neural Networks on Out-Of-Distribution Graphs
Shaohua Fan
Xiao Wang
Chuan Shi
Peng Cui
Bai Wang
CML
OOD
OODD
AI4CE
49
81
0
20 Nov 2021
Learning on Random Balls is Sufficient for Estimating (Some) Graph Parameters
Takanori Maehara
Hoang NT
35
2
0
05 Nov 2021
On Provable Benefits of Depth in Training Graph Convolutional Networks
Weilin Cong
M. Ramezani
M. Mahdavi
21
73
0
28 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
127
78
0
01 Oct 2021
Layer-wise Adaptive Graph Convolution Networks Using Generalized Pagerank
Kishan Wimalawarne
Taiji Suzuki
GNN
19
2
0
24 Aug 2021
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
162
123
0
17 Oct 2020
Spatially-Aware Graph Neural Networks for Relational Behavior Forecasting from Sensor Data
Sergio Casas
Cole Gulino
Renjie Liao
R. Urtasun
AI4CE
174
211
0
18 Oct 2019
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
250
3,236
0
24 Nov 2016
1