ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.10695
  4. Cited By
An Information-Theoretic Framework for Unifying Active Learning Problems

An Information-Theoretic Framework for Unifying Active Learning Problems

19 December 2020
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
ArXivPDFHTML

Papers citing "An Information-Theoretic Framework for Unifying Active Learning Problems"

5 / 5 papers shown
Title
PIED: Physics-Informed Experimental Design for Inverse Problems
Apivich Hemachandra
Gregory Kang Ruey Lau
Szu Hui Ng
Bryan Kian Hsiang Low
PINN
50
0
0
10 Mar 2025
Training-Free Neural Active Learning with Initialization-Robustness
  Guarantees
Training-Free Neural Active Learning with Initialization-Robustness Guarantees
Apivich Hemachandra
Zhongxiang Dai
Jasraj Singh
See-Kiong Ng
K. H. Low
AAML
46
6
0
07 Jun 2023
Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation
Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation
Benjamin Letham
Phillip Guan
Chase Tymms
E. Bakshy
Michael Shvartsman
35
10
0
18 Mar 2022
Max-value Entropy Search for Efficient Bayesian Optimization
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
404
0
06 Mar 2017
Truncated Variance Reduction: A Unified Approach to Bayesian
  Optimization and Level-Set Estimation
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation
Ilija Bogunovic
Jonathan Scarlett
Andreas Krause
V. Cevher
72
89
0
24 Oct 2016
1