ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.10988
  4. Cited By
Post-hoc Uncertainty Calibration for Domain Drift Scenarios

Post-hoc Uncertainty Calibration for Domain Drift Scenarios

20 December 2020
Christian Tomani
Sebastian Gruber
Muhammed Ebrar Erdem
Daniel Cremers
Florian Buettner
    UQCV
ArXivPDFHTML

Papers citing "Post-hoc Uncertainty Calibration for Domain Drift Scenarios"

17 / 17 papers shown
Title
Optimizing Estimators of Squared Calibration Errors in Classification
Optimizing Estimators of Squared Calibration Errors in Classification
Sebastian G. Gruber
Francis Bach
74
1
0
24 Feb 2025
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
55
3
0
05 Jun 2024
Optimizing Calibration by Gaining Aware of Prediction Correctness
Optimizing Calibration by Gaining Aware of Prediction Correctness
Yuchi Liu
Lei Wang
Yuli Zou
James Zou
Liang Zheng
UQCV
44
1
0
19 Apr 2024
Do not trust what you trust: Miscalibration in Semi-supervised Learning
Do not trust what you trust: Miscalibration in Semi-supervised Learning
Shambhavi Mishra
Balamurali Murugesan
Ismail Ben Ayed
M. Pedersoli
Jose Dolz
48
2
0
22 Mar 2024
Class and Region-Adaptive Constraints for Network Calibration
Class and Region-Adaptive Constraints for Network Calibration
Balamurali Murugesan
Julio Silva-Rodríguez
Ismail Ben Ayed
Jose Dolz
36
1
0
19 Mar 2024
Consistency-Guided Temperature Scaling Using Style and Content
  Information for Out-of-Domain Calibration
Consistency-Guided Temperature Scaling Using Style and Content Information for Out-of-Domain Calibration
Wonjeong Choi
Jun-Gyu Park
Dong-Jun Han
Younghyun Park
Jaekyun Moon
39
1
0
22 Feb 2024
Optimization's Neglected Normative Commitments
Optimization's Neglected Normative Commitments
Benjamin Laufer
T. Gilbert
Helen Nissenbaum
OffRL
21
4
0
27 May 2023
Transfer Knowledge from Head to Tail: Uncertainty Calibration under
  Long-tailed Distribution
Transfer Knowledge from Head to Tail: Uncertainty Calibration under Long-tailed Distribution
Jiahao Chen
Bingyue Su
32
11
0
13 Apr 2023
Bridging Precision and Confidence: A Train-Time Loss for Calibrating
  Object Detection
Bridging Precision and Confidence: A Train-Time Loss for Calibrating Object Detection
Muhammad Akhtar Munir
Muhammad Haris Khan
Salman Khan
F. Khan
UQCV
35
15
0
25 Mar 2023
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Christian Tomani
Futa Waseda
Yuesong Shen
Daniel Cremers
UQCV
29
4
0
10 Feb 2023
A Call to Reflect on Evaluation Practices for Failure Detection in Image
  Classification
A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification
Paul F. Jaeger
Carsten T. Lüth
Lukas Klein
Till J. Bungert
UQCV
26
35
0
28 Nov 2022
Towards Improving Calibration in Object Detection Under Domain Shift
Towards Improving Calibration in Object Detection Under Domain Shift
Muhammad Akhtar Munir
M. H. Khan
M. Sarfraz
Mohsen Ali
19
22
0
15 Sep 2022
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved
  Neural Network Calibration
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration
R. Hebbalaguppe
Jatin Prakash
Neelabh Madan
Chetan Arora
UQCV
22
42
0
25 Mar 2022
The Devil is in the Margin: Margin-based Label Smoothing for Network
  Calibration
The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration
Bingyuan Liu
Ismail Ben Ayed
Adrian Galdran
Jose Dolz
UQCV
24
65
0
30 Nov 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable
  Expected Calibration Error
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
43
21
0
17 Jun 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1