ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.11330
  4. Cited By
A Bayesian multiscale CNN framework to predict local stress fields in
  structures with microscale features

A Bayesian multiscale CNN framework to predict local stress fields in structures with microscale features

17 December 2020
Vasilis Krokos
V. Bui Xuan
Stéphane P. A. Bordas
P. Young
P. Kerfriden
ArXivPDFHTML

Papers citing "A Bayesian multiscale CNN framework to predict local stress fields in structures with microscale features"

3 / 3 papers shown
Title
MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations
MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations
Saurabh Deshpande
Stéphane P. A. Bordas
J. Lengiewicz
AI4CE
GNN
82
28
0
01 Nov 2022
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
126
0
14 Dec 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
261
9,136
0
06 Jun 2015
1