ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.11349
  4. Cited By
A comparison of learning rate selection methods in generalized Bayesian
  inference

A comparison of learning rate selection methods in generalized Bayesian inference

21 December 2020
Pei-Shien Wu
Ryan Martin
    BDL
ArXiv (abs)PDFHTML

Papers citing "A comparison of learning rate selection methods in generalized Bayesian inference"

25 / 25 papers shown
Title
Predictive performance of power posteriors
Predictive performance of power posteriors
Yann McLatchie
Edwin Fong
David T. Frazier
Jeremias Knoblauch
61
2
0
16 Aug 2024
Concentration of a sparse Bayesian model with Horseshoe prior in
  estimating high-dimensional precision matrix
Concentration of a sparse Bayesian model with Horseshoe prior in estimating high-dimensional precision matrix
The Tien Mai
67
4
0
20 Jun 2024
Weighted Particle-Based Optimization for Efficient Generalized Posterior
  Calibration
Weighted Particle-Based Optimization for Efficient Generalized Posterior Calibration
Masahiro Tanaka
93
0
0
08 May 2024
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Masahiro Tanaka
100
2
0
25 Apr 2024
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
84
13
0
01 Nov 2023
A Risk Management Perspective on Statistical Estimation and Generalized
  Variational Inference
A Risk Management Perspective on Statistical Estimation and Generalized Variational Inference
Aurya Javeed
D. Kouri
T. Surowiec
80
2
0
26 Oct 2023
Sequential Gibbs Posteriors with Applications to Principal Component
  Analysis
Sequential Gibbs Posteriors with Applications to Principal Component Analysis
Steven Winter
Omar Melikechi
David B. Dunson
74
2
0
19 Oct 2023
Generalized Bayesian Inference for Scientific Simulators via Amortized
  Cost Estimation
Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation
Richard Gao
Michael Deistler
Jakob H. Macke
133
13
0
24 May 2023
A Rigorous Link between Deep Ensembles and (Variational) Bayesian
  Methods
A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods
Veit Wild
Sahra Ghalebikesabi
Dino Sejdinovic
Jeremias Knoblauch
BDLUQCV
98
16
0
24 May 2023
Robustness of Bayesian ordinal response model against outliers via
  divergence approach
Robustness of Bayesian ordinal response model against outliers via divergence approach
Tomotaka Momozaki
Tomoyuki Nakagawa
60
1
0
12 May 2023
Combining experimental and observational data through a power likelihood
Combining experimental and observational data through a power likelihood
Xi Lin
J. Tarp
R. Evans
CML
63
5
0
05 Apr 2023
Valid Inference for Machine Learning Model Parameters
Valid Inference for Machine Learning Model Parameters
N. Dey
Jonathan P. Williams
87
1
0
21 Feb 2023
Reliable Bayesian Inference in Misspecified Models
Reliable Bayesian Inference in Misspecified Models
David T. Frazier
Robert Kohn
Christopher C. Drovandi
David Gunawan
80
5
0
13 Feb 2023
Robust and Scalable Bayesian Online Changepoint Detection
Robust and Scalable Bayesian Online Changepoint Detection
Matias Altamirano
F. Briol
Jeremias Knoblauch
75
14
0
09 Feb 2023
Semiparametric inference using fractional posteriors
Semiparametric inference using fractional posteriors
Alice L'Huillier
Luke Travis
I. Castillo
Kolyan Ray
74
5
0
19 Jan 2023
Sampling algorithms in statistical physics: a guide for statistics and
  machine learning
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
57
7
0
09 Aug 2022
Bernstein - von Mises theorem and misspecified models: a review
Bernstein - von Mises theorem and misspecified models: a review
N. Bochkina
80
9
0
28 Apr 2022
Scalable Semi-Modular Inference with Variational Meta-Posteriors
Scalable Semi-Modular Inference with Variational Meta-Posteriors
Chris U. Carmona
Geoff K. Nicholls
51
11
0
01 Apr 2022
Cutting feedback and modularized analyses in generalized Bayesian
  inference
Cutting feedback and modularized analyses in generalized Bayesian inference
David T. Frazier
David J. Nott
92
7
0
21 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD
  Posterior Bootstrap
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
88
45
0
09 Feb 2022
Gibbs posterior inference on a Levy density under discrete sampling
Gibbs posterior inference on a Levy density under discrete sampling
Zhe Wang
Ryan Martin
86
4
0
14 Sep 2021
Calibrating generalized predictive distributions
Calibrating generalized predictive distributions
Pei-Shien Wu
Ryan Martin
100
8
0
04 Jul 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
80
80
0
15 Apr 2021
Gibbs posterior concentration rates under sub-exponential type losses
Gibbs posterior concentration rates under sub-exponential type losses
Nicholas Syring
Ryan Martin
118
29
0
08 Dec 2020
Gibbs posterior inference on multivariate quantiles
Gibbs posterior inference on multivariate quantiles
Indrabati Bhattacharya
Ryan Martin
128
21
0
03 Feb 2020
1