ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.11788
  4. Cited By
Algorithmic Recourse in the Wild: Understanding the Impact of Data and
  Model Shifts

Algorithmic Recourse in the Wild: Understanding the Impact of Data and Model Shifts

22 December 2020
Kaivalya Rawal
Ece Kamar
Himabindu Lakkaraju
ArXivPDFHTML

Papers citing "Algorithmic Recourse in the Wild: Understanding the Impact of Data and Model Shifts"

14 / 14 papers shown
Title
From Search To Sampling: Generative Models For Robust Algorithmic Recourse
From Search To Sampling: Generative Models For Robust Algorithmic Recourse
Prateek Garg
Lokesh Nagalapatti
Sunita Sarawagi
36
0
0
12 May 2025
Understanding Fixed Predictions via Confined Regions
Understanding Fixed Predictions via Confined Regions
Connor Lawless
Tsui-Wei Weng
Berk Ustun
Madeleine Udell
48
0
0
22 Feb 2025
The Curious Case of Arbitrariness in Machine Learning
Prakhar Ganesh
Afaf Taik
G. Farnadi
69
2
0
28 Jan 2025
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
45
1
0
18 Oct 2024
Counterfactual Explanations and Predictive Models to Enhance Clinical
  Decision-Making in Schizophrenia using Digital Phenotyping
Counterfactual Explanations and Predictive Models to Enhance Clinical Decision-Making in Schizophrenia using Digital Phenotyping
Juan Sebastián Canas
Francisco Gomez
Omar Costilla-Reyes
21
1
0
06 Jun 2023
Generating robust counterfactual explanations
Generating robust counterfactual explanations
Victor Guyomard
Franccoise Fessant
Thomas Guyet
Tassadit Bouadi
Alexandre Termier
48
10
0
24 Apr 2023
Finding Regions of Counterfactual Explanations via Robust Optimization
Finding Regions of Counterfactual Explanations via Robust Optimization
Donato Maragno
Jannis Kurtz
Tabea E. Rober
Rob Goedhart
cS. .Ilker Birbil
D. Hertog
54
22
0
26 Jan 2023
Improvement-Focused Causal Recourse (ICR)
Improvement-Focused Causal Recourse (ICR)
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
CML
39
15
0
27 Oct 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between
  Costs and Robustness in Algorithmic Recourse
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
24
38
0
13 Mar 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse
  Perturbations
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
26
36
0
22 Jan 2022
On the Adversarial Robustness of Causal Algorithmic Recourse
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo
Amir-Hossein Karimi
Bernhard Schölkopf
46
63
0
21 Dec 2021
GeCo: Quality Counterfactual Explanations in Real Time
GeCo: Quality Counterfactual Explanations in Real Time
Maximilian Schleich
Zixuan Geng
Yihong Zhang
D. Suciu
48
61
0
05 Jan 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
164
0
20 Oct 2020
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,698
0
28 Feb 2017
1