ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12348
  4. Cited By
An overview on deep learning-based approximation methods for partial
  differential equations

An overview on deep learning-based approximation methods for partial differential equations

22 December 2020
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
ArXivPDFHTML

Papers citing "An overview on deep learning-based approximation methods for partial differential equations"

18 / 18 papers shown
Title
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
16
0
0
21 Aug 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
38
1
0
09 May 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
24
7
0
08 May 2024
Global Convergence of Deep Galerkin and PINNs Methods for Solving
  Partial Differential Equations
Global Convergence of Deep Galerkin and PINNs Methods for Solving Partial Differential Equations
Deqing Jiang
Justin A. Sirignano
Samuel N. Cohen
20
6
0
10 May 2023
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher
  order deep operator learning for parametric partial differential equations
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
Arnulf Jentzen
Adrian Riekert
Philippe von Wurstemberger
11
1
0
07 Feb 2023
Mean-field neural networks: learning mappings on Wasserstein space
Mean-field neural networks: learning mappings on Wasserstein space
H. Pham
X. Warin
11
13
0
27 Oct 2022
$r-$Adaptive Deep Learning Method for Solving Partial Differential
  Equations
r−r-r−Adaptive Deep Learning Method for Solving Partial Differential Equations
Ángel J. Omella
David Pardo
AI4CE
11
4
0
19 Oct 2022
Clifford Neural Layers for PDE Modeling
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
60
79
0
08 Sep 2022
Pricing options on flow forwards by neural networks in Hilbert space
Pricing options on flow forwards by neural networks in Hilbert space
F. Benth
Nils Detering
Luca Galimberti
11
7
0
17 Feb 2022
Convergence of a robust deep FBSDE method for stochastic control
Convergence of a robust deep FBSDE method for stochastic control
Kristoffer Andersson
Adam Andersson
C. Oosterlee
21
19
0
18 Jan 2022
Interpolating between BSDEs and PINNs: deep learning for elliptic and
  parabolic boundary value problems
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINN
DiffM
28
27
0
07 Dec 2021
Deep Neural Network Algorithms for Parabolic PIDEs and Applications in
  Insurance Mathematics
Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance Mathematics
R. Frey
Verena Köck
16
16
0
23 Sep 2021
On the eigenvector bias of Fourier feature networks: From regression to
  solving multi-scale PDEs with physics-informed neural networks
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
437
0
18 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
  Decomposition
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
Deep neural network solution of the electronic Schrödinger equation
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
144
445
0
16 Sep 2019
An Energy Approach to the Solution of Partial Differential Equations in
  Computational Mechanics via Machine Learning: Concepts, Implementation and
  Applications
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
145
1,333
0
27 Aug 2019
Deep splitting method for parabolic PDEs
Deep splitting method for parabolic PDEs
C. Beck
S. Becker
Patrick Cheridito
Arnulf Jentzen
Ariel Neufeld
14
125
0
08 Jul 2019
1