Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.12348
Cited By
An overview on deep learning-based approximation methods for partial differential equations
22 December 2020
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An overview on deep learning-based approximation methods for partial differential equations"
18 / 18 papers shown
Title
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
16
0
0
21 Aug 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
38
1
0
09 May 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
24
7
0
08 May 2024
Global Convergence of Deep Galerkin and PINNs Methods for Solving Partial Differential Equations
Deqing Jiang
Justin A. Sirignano
Samuel N. Cohen
20
6
0
10 May 2023
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
Arnulf Jentzen
Adrian Riekert
Philippe von Wurstemberger
11
1
0
07 Feb 2023
Mean-field neural networks: learning mappings on Wasserstein space
H. Pham
X. Warin
11
13
0
27 Oct 2022
r
−
r-
r
−
Adaptive Deep Learning Method for Solving Partial Differential Equations
Ángel J. Omella
David Pardo
AI4CE
11
4
0
19 Oct 2022
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
60
79
0
08 Sep 2022
Pricing options on flow forwards by neural networks in Hilbert space
F. Benth
Nils Detering
Luca Galimberti
11
7
0
17 Feb 2022
Convergence of a robust deep FBSDE method for stochastic control
Kristoffer Andersson
Adam Andersson
C. Oosterlee
21
19
0
18 Jan 2022
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINN
DiffM
28
27
0
07 Dec 2021
Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance Mathematics
R. Frey
Verena Köck
16
16
0
23 Sep 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
437
0
18 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
144
445
0
16 Sep 2019
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
145
1,333
0
27 Aug 2019
Deep splitting method for parabolic PDEs
C. Beck
S. Becker
Patrick Cheridito
Arnulf Jentzen
Ariel Neufeld
14
125
0
08 Jul 2019
1