Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.12810
Cited By
Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm
23 December 2020
Sinho Chewi
Chen Lu
Kwangjun Ahn
Xiang Cheng
Thibaut Le Gouic
Philippe Rigollet
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm"
50 / 52 papers shown
Title
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
120
1
0
01 Jul 2025
Restricted Spectral Gap Decomposition for Simulated Tempering Targeting Mixture Distributions
Jhanvi Garg
Krishna Balasubramanian
Quan Zhou
109
0
0
21 May 2025
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Jiaqi Leng
Zhiyan Ding
Zherui Chen
Lin Lin
97
1
0
08 May 2025
LAPD: Langevin-Assisted Bayesian Active Learning for Physical Discovery
Cindy Xiangrui Kong
Haoyang Zheng
Guang Lin
AI4CE
78
0
0
04 Mar 2025
On the query complexity of sampling from non-log-concave distributions
Yuchen He
Chihao Zhang
112
1
0
10 Feb 2025
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
Haoyang Zheng
Guang Lin
AI4CE
84
0
0
01 Feb 2025
Sampling with Adaptive Variance for Multimodal Distributions
Bjorn Engquist
Kui Ren
Yunan Yang
118
1
0
20 Nov 2024
Mixing of the No-U-Turn Sampler and the Geometry of Gaussian Concentration
Nawaf Bou-Rabee
Stefan Oberdörster
53
1
0
09 Oct 2024
Rényi-infinity constrained sampling with
d
3
d^3
d
3
membership queries
Yunbum Kook
Matthew Shunshi Zhang
68
1
0
17 Jul 2024
A Separation in Heavy-Tailed Sampling: Gaussian vs. Stable Oracles for Proximal Samplers
Ye He
Alireza Mousavi-Hosseini
Krishnakumar Balasubramanian
Murat A. Erdogdu
81
2
0
27 May 2024
Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network
Wandi Xu
Wei Xie
42
0
0
05 May 2024
Dimension-free Relaxation Times of Informed MCMC Samplers on Discrete Spaces
Hyunwoong Chang
Quan Zhou
77
6
0
05 Apr 2024
Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction
Xingyu Xu
Yuejie Chi
DiffM
96
27
0
25 Mar 2024
Sampling from the Mean-Field Stationary Distribution
Yunbum Kook
Matthew Shunshi Zhang
Sinho Chewi
Murat A. Erdogdu
Mufan Li
120
7
0
12 Feb 2024
Fast sampling from constrained spaces using the Metropolis-adjusted Mirror Langevin algorithm
Vishwak Srinivasan
Andre Wibisono
Ashia Wilson
70
7
0
14 Dec 2023
Quantifying the effectiveness of linear preconditioning in Markov chain Monte Carlo
Max Hird
Samuel Livingstone
65
5
0
08 Dec 2023
Particle Guidance: non-I.I.D. Diverse Sampling with Diffusion Models
Gabriele Corso
Yilun Xu
Valentin De Bortoli
Regina Barzilay
Tommi Jaakkola
DiffM
102
26
0
19 Oct 2023
Learning variational autoencoders via MCMC speed measures
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDL
DRL
48
2
0
26 Aug 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
Thomas Pock
97
4
0
25 May 2023
When does Metropolized Hamiltonian Monte Carlo provably outperform Metropolis-adjusted Langevin algorithm?
Yuansi Chen
Khashayar Gatmiry
129
16
0
10 Apr 2023
Query lower bounds for log-concave sampling
Sinho Chewi
Jaume de Dios Pont
Jerry Li
Chen Lu
Shyam Narayanan
95
8
0
05 Apr 2023
Inferring networks from time series: a neural approach
Thomas Gaskin
G. Pavliotis
Mark Girolami
AI4TS
79
7
0
30 Mar 2023
Towards a Complete Analysis of Langevin Monte Carlo: Beyond Poincaré Inequality
Alireza Mousavi-Hosseini
Tyler Farghly
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
116
27
0
07 Mar 2023
Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation
David Holzmüller
Francis R. Bach
84
9
0
06 Mar 2023
Mean-Square Analysis of Discretized Itô Diffusions for Heavy-tailed Sampling
Ye He
Tyler Farghly
Krishnakumar Balasubramanian
Murat A. Erdogdu
86
4
0
01 Mar 2023
Faster high-accuracy log-concave sampling via algorithmic warm starts
Jason M. Altschuler
Sinho Chewi
109
36
0
20 Feb 2023
Improved dimension dependence of a proximal algorithm for sampling
JiaoJiao Fan
Bo Yuan
Yongxin Chen
81
25
0
20 Feb 2023
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler
Sivakanth Gopi
Y. Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
93
7
0
13 Feb 2023
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
65
17
0
09 Feb 2023
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
96
25
0
16 Oct 2022
Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
88
12
0
13 Oct 2022
Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants
Andrew M. Childs
Tongyang Li
Jin-Peng Liu
Cong Wang
Ruizhe Zhang
64
17
0
12 Oct 2022
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
113
15
0
05 Oct 2022
Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random steps
Simon Apers
S. Gribling
Dániel Szilágyi
86
10
0
26 Sep 2022
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
227
278
0
22 Sep 2022
On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions
Afonso S. Bandeira
Antoine Maillard
Richard Nickl
Sven Wang
67
10
0
05 Sep 2022
Gradient-based data and parameter dimension reduction for Bayesian models: an information theoretic perspective
Ricardo Baptista
Youssef Marzouk
O. Zahm
56
14
0
18 Jul 2022
On the Computational Complexity of Metropolis-Adjusted Langevin Algorithms for Bayesian Posterior Sampling
Rong Tang
Yun Yang
51
5
0
13 Jun 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
90
15
0
26 Feb 2022
Heavy-tailed Sampling via Transformed Unadjusted Langevin Algorithm
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
83
5
0
20 Jan 2022
On the geometric convergence for MALA under verifiable conditions
Alain Durmus
Eric Moulines
63
12
0
06 Jan 2022
On Mixing Times of Metropolized Algorithm With Optimization Step (MAO) : A New Framework
EL Mahdi Khribch
George Deligiannidis
Daniel Paulin
25
0
0
01 Dec 2021
Minimax Mixing Time of the Metropolis-Adjusted Langevin Algorithm for Log-Concave Sampling
Keru Wu
S. Schmidler
Yuansi Chen
127
54
0
27 Sep 2021
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Ruilin Li
H. Zha
Molei Tao
88
29
0
08 Sep 2021
Convergence of position-dependent MALA with application to conditional simulation in GLMMs
Vivekananda Roy
Lijin Zhang
56
8
0
28 Aug 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
81
20
0
02 Aug 2021
Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions
Y. Lee
Ruoqi Shen
Kevin Tian
54
20
0
10 Jun 2021
The query complexity of sampling from strongly log-concave distributions in one dimension
Sinho Chewi
P. Gerber
Chen Lu
Thibaut Le Gouic
Philippe Rigollet
87
21
0
29 May 2021
Mixing Time Guarantees for Unadjusted Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
110
31
0
03 May 2021
Efficient constrained sampling via the mirror-Langevin algorithm
Kwangjun Ahn
Sinho Chewi
111
57
0
30 Oct 2020
1
2
Next