Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.15638
Cited By
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for 3D Point Clouds
31 December 2020
Yiming Zeng
Y. Qian
Zhiyu Zhu
Junhui Hou
Hui Yuan
Ying He
3DPC
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence for 3D Point Clouds"
6 / 6 papers shown
Title
Denoising Functional Maps: Diffusion Models for Shape Correspondence
Aleksei Zhuravlev
Zorah Lähner
Vladislav Golyanik
DiffM
63
1
0
03 Mar 2025
Sync4D: Video Guided Controllable Dynamics for Physics-Based 4D Generation
Zhoujie Fu
Jiacheng Wei
Wenhao Shen
Chaoyue Song
Xiaofeng Yang
Fayao Liu
Xulei Yang
Guosheng Lin
3DGS
25
5
0
27 May 2024
Non-Rigid Shape Registration via Deep Functional Maps Prior
Puhua Jiang
Mingze Sun
Ruqi Huang
11
10
0
08 Nov 2023
Learning a Task-specific Descriptor for Robust Matching of 3D Point Clouds
Zhiyuan Zhang
Yuchao Dai
Bin Fan
Jiadai Sun
Mingyi He
3DPC
30
6
0
26 Oct 2022
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
107
305
0
13 Jun 2018
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
1