Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.03288
Cited By
How to Train Your Energy-Based Models
9 January 2021
Yang Song
Diederik P. Kingma
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Train Your Energy-Based Models"
50 / 150 papers shown
Title
Stabilized training of joint energy-based models and their practical applications
Martin Sustek
Samik Sadhu
L. Burget
H. Hermansky
Jesus Villalba
Laureano Moro Velázquez
Najim Dehak
AAML
VLM
13
1
0
07 Mar 2023
Diffusion Model-Augmented Behavioral Cloning
Shangcheng Chen
Hsiang-Chun Wang
Ming-Hao Hsu
Chun-Mao Lai
Shao-Hua Sun
DiffM
47
31
0
26 Feb 2023
Energy-Based Test Sample Adaptation for Domain Generalization
Zehao Xiao
Xiantong Zhen
Shengcai Liao
Cees G. M. Snoek
TTA
48
17
0
22 Feb 2023
A Text-guided Protein Design Framework
Shengchao Liu
Yanjing Li
Zhuoxinran Li
A. Gitter
Yutao Zhu
...
Arvind Ramanathan
Chaowei Xiao
Jian Tang
Hongyu Guo
Anima Anandkumar
65
61
0
09 Feb 2023
Mind the Gap: Offline Policy Optimization for Imperfect Rewards
Jianxiong Li
Xiao Hu
Haoran Xu
Jingjing Liu
Xianyuan Zhan
Qing-Shan Jia
Ya-Qin Zhang
OffRL
38
19
0
03 Feb 2023
MonoFlow: Rethinking Divergence GANs via the Perspective of Wasserstein Gradient Flows
Mingxuan Yi
Zhanxing Zhu
Song Liu
GAN
24
13
0
02 Feb 2023
Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics
Marloes Arts
Victor Garcia Satorras
Chin-Wei Huang
Daniel Zuegner
Marco Federici
C. Clementi
Frank Noé
Robert Pinsler
Rianne van den Berg
DiffM
11
85
0
01 Feb 2023
A survey and taxonomy of loss functions in machine learning
Lorenzo Ciampiconi
A. Elwood
Marco Leonardi
A. Mohamed
A. Rozza
MU
FaML
9
25
0
13 Jan 2023
Detecting Objects with Context-Likelihood Graphs and Graph Refinement
Aritra Bhowmik
Yu Wang
N. Baka
Martin R. Oswald
Cees G. M. Snoek
19
2
0
23 Dec 2022
Robust Graph Representation Learning via Predictive Coding
Billy Byiringiro
Tommaso Salvatori
Thomas Lukasiewicz
OOD
25
6
0
09 Dec 2022
End-to-End Stochastic Optimization with Energy-Based Model
Lingkai Kong
Jiaming Cui
Yuchen Zhuang
Rui Feng
B. Prakash
Chao Zhang
13
16
0
25 Nov 2022
Self-Adapting Noise-Contrastive Estimation for Energy-Based Models
Na Xu
4
2
0
03 Nov 2022
Consistent Training via Energy-Based GFlowNets for Modeling Discrete Joint Distributions
C. Ekbote
Moksh Jain
Payel Das
Yoshua Bengio
40
4
0
01 Nov 2022
Minimum Kernel Discrepancy Estimators
Chris J. Oates
24
10
0
28 Oct 2022
Improving abstractive summarization with energy-based re-ranking
Diogo Pernes
Afonso Mendes
André F. T. Martins
23
6
0
27 Oct 2022
Maximum Likelihood Learning of Unnormalized Models for Simulation-Based Inference
Pierre Glaser
Michael Arbel
Samo Hromadka
Arnaud Doucet
A. Gretton
25
2
0
26 Oct 2022
Gradient-Guided Importance Sampling for Learning Binary Energy-Based Models
Meng Liu
Haoran Liu
Shuiwang Ji
24
5
0
11 Oct 2022
Hiding Images in Deep Probabilistic Models
Haoyu Chen
Linqi Song
Zhenxing Qian
Xinpeng Zhang
Kede Ma
AAML
11
10
0
05 Oct 2022
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Beomsu Kim
Jong Chul Ye
DiffM
49
13
0
29 Sep 2022
Towards Healing the Blindness of Score Matching
Mingtian Zhang
Oscar Key
Peter Hayes
David Barber
Brooks Paige
F. Briol
MedIm
55
14
0
15 Sep 2022
SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion
Julen Urain
Niklas Funk
Jan Peters
Georgia Chalvatzaki
DiffM
55
118
0
08 Sep 2022
A Survey on Generative Diffusion Model
Hanqun Cao
Cheng Tan
Zhangyang Gao
Yilun Xu
Guangyong Chen
Pheng-Ann Heng
Stan Z. Li
MedIm
37
206
0
06 Sep 2022
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Bin Cui
Ming-Hsuan Yang
DiffM
MedIm
224
1,302
0
02 Sep 2022
Understanding Diffusion Models: A Unified Perspective
Calvin Luo
DiffM
13
332
0
25 Aug 2022
Semantic Driven Energy based Out-of-Distribution Detection
Abhishek Joshi
Sathish Chalasani
K. N. Iyer
OODD
26
4
0
23 Aug 2022
RenyiCL: Contrastive Representation Learning with Skew Renyi Divergence
Kyungmin Lee
Jinwoo Shin
SSL
DRL
29
10
0
12 Aug 2022
Implicit Two-Tower Policies
Yunfan Zhao
Qingkai Pan
K. Choromanski
Deepali Jain
Vikas Sindhwani
OffRL
28
3
0
02 Aug 2022
Restoring Vision in Adverse Weather Conditions with Patch-Based Denoising Diffusion Models
Ozan Özdenizci
R. Legenstein
DiffM
30
240
0
29 Jul 2022
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
21
12
0
14 Jul 2022
Statistical applications of contrastive learning
Michael U. Gutmann
Steven Kleinegesse
Benjamin Rhodes
18
7
0
29 Apr 2022
Learning Implicit Priors for Motion Optimization
Julen Urain
An T. Le
Alexander Lambert
Georgia Chalvatzaki
Byron Boots
Jan Peters
28
24
0
11 Apr 2022
Learning to Solve Travelling Salesman Problem with Hardness-adaptive Curriculum
Zeyang Zhang
Ziwei Zhang
Xin Eric Wang
Wenwu Zhu
17
42
0
07 Apr 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
28
86
0
28 Mar 2022
Structured Multi-task Learning for Molecular Property Prediction
Shengchao Liu
Meng Qu
Zuobai Zhang
Huiyu Cai
Jian Tang
13
24
0
22 Feb 2022
Solving Inverse Problems in Medical Imaging with Score-Based Generative Models
Yang Song
Liyue Shen
Lei Xing
Stefano Ermon
DiffM
SyDa
OffRL
MedIm
30
511
0
15 Nov 2021
Estimating High Order Gradients of the Data Distribution by Denoising
Chenlin Meng
Yang Song
Wenzhe Li
Stefano Ermon
DiffM
8
45
0
08 Nov 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
33
13
0
03 Nov 2021
Controllable and Compositional Generation with Latent-Space Energy-Based Models
Weili Nie
Arash Vahdat
Anima Anandkumar
17
78
0
21 Oct 2021
Score-based diffusion models for accelerated MRI
Hyungjin Chung
Jong Chul Ye
DiffM
MedIm
39
399
0
08 Oct 2021
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
117
302
0
07 Oct 2021
Implicit Behavioral Cloning
Peter R. Florence
Corey Lynch
Andy Zeng
Oscar Ramirez
Ayzaan Wahid
Laura Downs
Adrian S. Wong
Johnny Lee
Igor Mordatch
Jonathan Tompson
OffRL
49
369
0
01 Sep 2021
Dual Training of Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Marylou Gabrié
Joan Bruna
Eric Vanden-Eijnden
FedML
32
6
0
11 Jul 2021
Scaling up Continuous-Time Markov Chains Helps Resolve Underspecification
Alkis Gotovos
R. Burkholz
John Quackenbush
Stefanie Jegelka
16
8
0
06 Jul 2021
ScoreGrad: Multivariate Probabilistic Time Series Forecasting with Continuous Energy-based Generative Models
Tijin Yan
Hongwei Zhang
Tong Zhou
Yufeng Zhan
Yuanqing Xia
DiffM
AI4TS
30
38
0
18 Jun 2021
Learning to Efficiently Sample from Diffusion Probabilistic Models
Daniel Watson
Jonathan Ho
Mohammad Norouzi
William Chan
DiffM
39
134
0
07 Jun 2021
A Variational Perspective on Diffusion-Based Generative Models and Score Matching
Chin-Wei Huang
Jae Hyun Lim
Aaron Courville
DiffM
35
186
0
05 Jun 2021
Autoencoding Under Normalization Constraints
Sangwoong Yoon
Yung-Kyun Noh
Frank C. Park
OODD
UQCV
27
38
0
12 May 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
478
0
08 Mar 2021
Training Deep Energy-Based Models with f-Divergence Minimization
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
176
42
0
06 Mar 2020
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
233
2,545
0
25 Jan 2016
Previous
1
2
3