Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.04108
Cited By
v1
v2
v3 (latest)
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation
11 January 2021
Umang Gupta
Aaron Ferber
B. Dilkina
Greg Ver Steeg
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation"
35 / 35 papers shown
Title
Expressive Score-Based Priors for Distribution Matching with Geometry-Preserving Regularization
Ziyu Gong
Jim Lim
David I. Inouye
DiffM
29
0
0
17 Jun 2025
Fairness Overfitting in Machine Learning: An Information-Theoretic Perspective
Firas Laakom
Haobo Chen
Jürgen Schmidhuber
Yuheng Bu
14
0
0
09 Jun 2025
Improving Recommendation Fairness without Sensitive Attributes Using Multi-Persona LLMs
Haoran Xin
Ying Sun
Chao Wang
Yanke Yu
Weijia Zhang
Hui Xiong
FaML
37
0
0
26 May 2025
Fair Representation Learning for Continuous Sensitive Attributes using Expectation of Integral Probability Metrics
Insung Kong
Kunwoong Kim
Yongdai Kim
FaML
184
1
0
09 May 2025
ReLU integral probability metric and its applications
Yuha Park
Kunwoong Kim
Insung Kong
Yongdai Kim
93
0
0
26 Apr 2025
Fair Sufficient Representation Learning
Xueyu Zhou
Chun Yin IP
Jian Huang
FaML
72
0
0
29 Mar 2025
Fair Text Classification via Transferable Representations
Thibaud Leteno
Michael Perrot
Charlotte Laclau
Antoine Gourru
Christophe Gravier
FaML
117
0
0
10 Mar 2025
Bridging Fairness Gaps: A (Conditional) Distance Covariance Perspective in Fairness Learning
Ruifan Huang
Haixia Liu
FedML
FaML
168
1
0
01 Dec 2024
Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning
Qi Qi
Quanqi Hu
Qihang Lin
Tianbao Yang
126
1
0
09 Jun 2024
Back to the Drawing Board for Fair Representation Learning
Angeline Pouget
Nikola Jovanović
Mark Vero
Robin Staab
Martin Vechev
57
0
0
28 May 2024
DispaRisk: Auditing Fairness Through Usable Information
Jonathan Vasquez
Carlotta Domeniconi
Huzefa Rangwala
61
0
0
20 May 2024
From Discrete to Continuous: Deep Fair Clustering With Transferable Representations
Xiang Zhang
90
0
0
24 Mar 2024
From Principle to Practice: Vertical Data Minimization for Machine Learning
Robin Staab
Nikola Jovanović
Mislav Balunović
Martin Vechev
76
7
0
17 Nov 2023
Towards Practical Non-Adversarial Distribution Matching
Ziyu Gong
Ben Usman
Han Zhao
David I. Inouye
OOD
57
2
0
30 Oct 2023
Learning Fair Representations with High-Confidence Guarantees
Yuhong Luo
Austin Hoag
Philip S Thomas
FaML
AI4TS
195
1
0
23 Oct 2023
A Novel Information-Theoretic Objective to Disentangle Representations for Fair Classification
Pierre Colombo
Nathan Noiry
Guillaume Staerman
Pablo Piantanida
FaML
DRL
78
1
0
21 Oct 2023
Towards Poisoning Fair Representations
Tianci Liu
Haoyu Wang
Feijie Wu
Hengtong Zhang
Pan Li
Lu Su
Jing Gao
AAML
69
2
0
28 Sep 2023
FAIRER: Fairness as Decision Rationale Alignment
Tianlin Li
Qing Guo
Aishan Liu
Mengnan Du
Zhiming Li
Yang Liu
60
16
0
27 Jun 2023
FairDP: Certified Fairness with Differential Privacy
K. Tran
Ferdinando Fioretto
Issa M. Khalil
My T. Thai
Nhathai Phan
76
0
0
25 May 2023
Model and Evaluation: Towards Fairness in Multilingual Text Classification
Nankai Lin
Junheng He
Zhenghang Tang
Dong-ping Zhou
Aimin Yang
85
2
0
28 Mar 2023
Pushing the Accuracy-Group Robustness Frontier with Introspective Self-play
J. Liu
Krishnamurthy Dvijotham
Jihyeon Janel Lee
Quan Yuan
Martin Strobel
Balaji Lakshminarayanan
Deepak Ramachandran
75
5
0
11 Feb 2023
Deep Learning on a Healthy Data Diet: Finding Important Examples for Fairness
A. Zayed
Prasanna Parthasarathi
Gonçalo Mordido
Hamid Palangi
Samira Shabanian
Sarath Chandar
54
22
0
20 Nov 2022
MMD-B-Fair: Learning Fair Representations with Statistical Testing
Namrata Deka
Danica J. Sutherland
98
7
0
15 Nov 2022
FARE: Provably Fair Representation Learning with Practical Certificates
Nikola Jovanović
Mislav Balunović
Dimitar I. Dimitrov
Martin Vechev
210
13
0
13 Oct 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
105
177
0
14 Jul 2022
Understanding Instance-Level Impact of Fairness Constraints
Jialu Wang
Xinze Wang
Yang Liu
TDI
FaML
108
34
0
30 Jun 2022
Input-agnostic Certified Group Fairness via Gaussian Parameter Smoothing
Jiayin Jin
Zeru Zhang
Yang Zhou
Lingfei Wu
71
13
0
22 Jun 2022
Fair Representation Learning through Implicit Path Alignment
Changjian Shui
Qi Chen
Jiaqi Li
Boyu Wang
Christian Gagné
103
28
0
26 May 2022
SoFaiR: Single Shot Fair Representation Learning
Xavier Gitiaux
Huzefa Rangwala
73
4
0
26 Apr 2022
Distraction is All You Need for Fairness
Mehdi Yazdani-Jahromi
Amirarsalan Rajabi
Ali Khodabandeh Yalabadi
Aida Tayebi
O. Garibay
113
3
0
15 Mar 2022
Attributing Fair Decisions with Attention Interventions
Ninareh Mehrabi
Umang Gupta
Fred Morstatter
Greg Ver Steeg
Aram Galstyan
68
21
0
08 Sep 2021
Simpler, Faster, Stronger: Breaking The log-K Curse On Contrastive Learners With FlatNCE
Junya Chen
Zhe Gan
Xuan Li
Qing Guo
Liqun Chen
...
Belinda Zeng
Wenlian Lu
Fan Li
Lawrence Carin
Chenyang Tao
96
28
0
02 Jul 2021
Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization
Qing Guo
Junya Chen
Dong Wang
Yuewei Yang
Xinwei Deng
Lawrence Carin
Fan Li
Jing-Zheng Huang
Chenyang Tao
83
21
0
02 Jul 2021
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
57
38
0
10 Jun 2021
Conditional Contrastive Learning for Improving Fairness in Self-Supervised Learning
Martin Q. Ma
Yao-Hung Hubert Tsai
Paul Pu Liang
Han Zhao
Kun Zhang
Ruslan Salakhutdinov
Louis-Philippe Morency
SSL
83
16
0
05 Jun 2021
1