ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.04117
  4. Cited By
A Bayesian neural network predicts the dissolution of compact planetary
  systems

A Bayesian neural network predicts the dissolution of compact planetary systems

11 January 2021
M. Cranmer
Daniel Tamayo
H. Rein
Peter W. Battaglia
S. Hadden
P. Armitage
S. Ho
D. Spergel
    BDL
ArXivPDFHTML

Papers citing "A Bayesian neural network predicts the dissolution of compact planetary systems"

8 / 8 papers shown
Title
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
52
4
0
14 Oct 2024
Masked Bayesian Neural Networks : Theoretical Guarantee and its
  Posterior Inference
Masked Bayesian Neural Networks : Theoretical Guarantee and its Posterior Inference
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Gyuseung Baek
Yongdai Kim
BDL
43
4
0
24 May 2023
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid
  Simulations
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations
Maximilian Mueller
Robin Greif
Frank Jenko
Nils Thuerey
26
3
0
02 May 2022
Contrasting random and learned features in deep Bayesian linear
  regression
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
41
27
0
01 Mar 2022
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
33
374
0
29 Apr 2021
Learning Symbolic Physics with Graph Networks
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
193
84
0
12 Sep 2019
A disciplined approach to neural network hyper-parameters: Part 1 --
  learning rate, batch size, momentum, and weight decay
A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay
L. Smith
208
1,020
0
26 Mar 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
289
9,167
0
06 Jun 2015
1