ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.06046
  4. Cited By
Counterfactual Generative Networks

Counterfactual Generative Networks

15 January 2021
Axel Sauer
Andreas Geiger
    OOD
    BDL
    CML
ArXivPDFHTML

Papers citing "Counterfactual Generative Networks"

19 / 19 papers shown
Title
Are We Done with Object-Centric Learning?
Are We Done with Object-Centric Learning?
Alexander Rubinstein
Ameya Prabhu
Matthias Bethge
Seong Joon Oh
OCL
534
0
0
09 Apr 2025
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Lokesh Nagalapatti
Pranava Singhal
Avishek Ghosh
Sunita Sarawagi
CML
70
0
0
07 Feb 2025
Counterfactual Generative Modeling with Variational Causal Inference
Counterfactual Generative Modeling with Variational Causal Inference
Yulun Wu
Louie McConnell
Claudia Iriondo
CML
BDL
22
0
0
16 Oct 2024
Benchmarking Counterfactual Image Generation
Benchmarking Counterfactual Image Generation
Thomas Melistas
Nikos Spyrou
Nefeli Gkouti
Pedro Sanchez
Athanasios Vlontzos
Yannis Panagakis
G. Papanastasiou
Sotirios A. Tsaftaris
EGVM
CML
33
5
0
29 Mar 2024
Towards Characterizing Domain Counterfactuals For Invertible Latent
  Causal Models
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Zeyu Zhou
Ruqi Bai
Sean Kulinski
Murat Kocaoglu
David I. Inouye
CML
19
1
0
20 Jun 2023
On Counterfactual Data Augmentation Under Confounding
On Counterfactual Data Augmentation Under Confounding
Abbavaram Gowtham Reddy
Saketh Bachu
Saloni Dash
Charchit Sharma
Amit Sharma
V. Balasubramanian
CML
BDL
13
0
0
29 May 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
39
11
0
29 Jan 2023
Pearl Causal Hierarchy on Image Data: Intricacies & Challenges
Pearl Causal Hierarchy on Image Data: Intricacies & Challenges
Matej Zečević
Moritz Willig
D. Dhami
Kristian Kersting
13
0
0
23 Dec 2022
Deep Structural Causal Shape Models
Deep Structural Causal Shape Models
Rajat Rasal
Daniel Coelho De Castro
Nick Pawlowski
Ben Glocker
3DV
MedIm
20
12
0
23 Aug 2022
GLANCE: Global to Local Architecture-Neutral Concept-based Explanations
GLANCE: Global to Local Architecture-Neutral Concept-based Explanations
Avinash Kori
Ben Glocker
Francesca Toni
9
6
0
05 Jul 2022
Hierarchical Symbolic Reasoning in Hyperbolic Space for Deep
  Discriminative Models
Hierarchical Symbolic Reasoning in Hyperbolic Space for Deep Discriminative Models
Ainkaran Santhirasekaram
Avinash Kori
A. Rockall
Mathias Winkler
Francesca Toni
Ben Glocker
FAtt
25
4
0
05 Jul 2022
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And
  Dataset
Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset
Leon Sixt
M. Schuessler
Oana-Iuliana Popescu
Philipp Weiß
Tim Landgraf
FAtt
16
14
0
25 Apr 2022
Diffusion Causal Models for Counterfactual Estimation
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
13
67
0
21 Feb 2022
Making a (Counterfactual) Difference One Rationale at a Time
Making a (Counterfactual) Difference One Rationale at a Time
Michael J. Plyler
Michal Green
Min Chi
13
10
0
13 Jan 2022
FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN
  Space Optimization
FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimization
Xingchao Liu
Chengyue Gong
Lemeng Wu
Shujian Zhang
Haoran Su
Qiang Liu
CLIP
21
89
0
02 Dec 2021
Projected GANs Converge Faster
Projected GANs Converge Faster
Axel Sauer
Kashyap Chitta
Jens Muller
Andreas Geiger
15
234
0
01 Nov 2021
Causal Discovery from Conditionally Stationary Time Series
Causal Discovery from Conditionally Stationary Time Series
Carles Balsells-Rodas
Ruibo Tu
Hedvig Kjellström
Yingzhen Li
Gabriele Schweikert
Hedvig Kjellstrom
Yingzhen Li
BDL
CML
AI4TS
32
5
0
12 Oct 2021
Causal Learning for Socially Responsible AI
Causal Learning for Socially Responsible AI
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
63
13
0
25 Apr 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable
  Explanations
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
14
55
0
18 Mar 2021
1