ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.06329
  4. Cited By
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
  Selection Framework for Semi-Supervised Learning

In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning

15 January 2021
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
ArXivPDFHTML

Papers citing "In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning"

6 / 6 papers shown
Title
Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Qijie Ding
Jie Yin
Daokun Zhang
Junbin Gao
17
2
0
05 Jul 2023
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain
  Adaptive Semantic Segmentation
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
Zhedong Zheng
Yi Yang
NoLa
148
434
0
08 Mar 2020
3D Semi-Supervised Learning with Uncertainty-Aware Multi-View
  Co-Training
3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training
Yingda Xia
Fengze Liu
D. Yang
Jinzheng Cai
Lequan Yu
Zhuotun Zhu
Daguang Xu
Alan Yuille
H. Roth
151
118
0
29 Nov 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
220
9,525
0
09 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
253
4,940
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
232
8,157
0
06 Jun 2015
1