Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.06329
Cited By
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
15 January 2021
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
Re-assign community
ArXiv
PDF
HTML
Papers citing
"In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning"
6 / 6 papers shown
Title
Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Qijie Ding
Jie Yin
Daokun Zhang
Junbin Gao
17
2
0
05 Jul 2023
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
Zhedong Zheng
Yi Yang
NoLa
148
434
0
08 Mar 2020
3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training
Yingda Xia
Fengze Liu
D. Yang
Jinzheng Cai
Lequan Yu
Zhuotun Zhu
Daguang Xu
Alan Yuille
H. Roth
151
118
0
29 Nov 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
220
9,525
0
09 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
253
4,940
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
232
8,157
0
06 Jun 2015
1