ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.08176
  4. Cited By
Introduction to Normalizing Flows for Lattice Field Theory
v1v2v3 (latest)

Introduction to Normalizing Flows for Lattice Field Theory

20 January 2021
M. S. Albergo
D. Boyda
D. Hackett
G. Kanwar
Kyle Cranmer
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Introduction to Normalizing Flows for Lattice Field Theory"

32 / 32 papers shown
Title
Group-Equivariant Diffusion Models for Lattice Field Theory
Group-Equivariant Diffusion Models for Lattice Field Theory
Octavio Vega
J. Komijani
Aida El-Khadra
M. Marinković
DiffM
232
0
0
30 Oct 2025
Neural Triangular Transport Maps: A New Approach Towards Sampling in Lattice QCD
Neural Triangular Transport Maps: A New Approach Towards Sampling in Lattice QCD
Andrey Bryutkin
Youssef Marzouk
171
0
0
15 Oct 2025
NeuMC -- a package for neural sampling for lattice field theoriesSoftwareX (SoftwareX), 2025
Piotr Bialas
P. Korcyl
T. Stebel
Dawid Zapolski
208
1
0
14 Mar 2025
Fast and Unified Path Gradient Estimators for Normalizing Flows
Fast and Unified Path Gradient Estimators for Normalizing FlowsInternational Conference on Learning Representations (ICLR), 2024
Lorenz Vaitl
Ludwig Winkler
Lorenz Richter
Pan Kessel
224
5
0
23 Mar 2024
Multi-Lattice Sampling of Quantum Field Theories via Neural
  Operator-based Flows
Multi-Lattice Sampling of Quantum Field Theories via Neural Operator-based Flows
Bálint Máté
Franccois Fleuret
AI4CE
222
1
0
01 Jan 2024
Sampling Multimodal Distributions with the Vanilla Score: Benefits of
  Data-Based Initialization
Sampling Multimodal Distributions with the Vanilla Score: Benefits of Data-Based InitializationInternational Conference on Learning Representations (ICLR), 2023
Frederic Koehler
T. Vuong
DiffMSyDa
164
10
0
03 Oct 2023
Diffusion Models as Stochastic Quantization in Lattice Field Theory
Diffusion Models as Stochastic Quantization in Lattice Field TheoryJournal of High Energy Physics (JHEP), 2023
Lei Wang
Gert Aarts
Kai Zhou
DiffM
198
23
0
29 Sep 2023
Accelerating Markov Chain Monte Carlo sampling with diffusion models
Accelerating Markov Chain Monte Carlo sampling with diffusion modelsComputer Physics Communications (CPC), 2023
N. Hunt-Smith
W. Melnitchouk
F. Ringer
Nobuo Sato
A. Thomas
M. J. White
DiffM
159
28
0
04 Sep 2023
Training normalizing flows with computationally intensive target
  probability distributions
Training normalizing flows with computationally intensive target probability distributionsComputer Physics Communications (CPC), 2023
P. Białas
P. Korcyl
T. Stebel
180
6
0
25 Aug 2023
Sampling the lattice Nambu-Goto string using Continuous Normalizing
  Flows
Sampling the lattice Nambu-Goto string using Continuous Normalizing Flows
M. Caselle
E. Cellini
A. Nada
194
18
0
03 Jul 2023
Mutual information of spin systems from autoregressive neural networks
Mutual information of spin systems from autoregressive neural networksPhysical Review E (PRE), 2023
P. Białas
P. Korcyl
T. Stebel
134
4
0
26 Apr 2023
Fluctuation without dissipation: Microcanonical Langevin Monte Carlo
Fluctuation without dissipation: Microcanonical Langevin Monte CarloSymposium on Advances in Approximate Bayesian Inference (AABI), 2023
Jakob Robnik
U. Seljak
269
10
0
31 Mar 2023
Geometrical aspects of lattice gauge equivariant convolutional neural
  networks
Geometrical aspects of lattice gauge equivariant convolutional neural networks
J. Aronsson
David I. Müller
Daniel Schuh
155
10
0
20 Mar 2023
SE(3) diffusion model with application to protein backbone generation
SE(3) diffusion model with application to protein backbone generationInternational Conference on Machine Learning (ICML), 2023
Jason Yim
Brian L. Trippe
Valentin De Bortoli
Emile Mathieu
Arnaud Doucet
Regina Barzilay
Tommi Jaakkola
DiffM
361
277
0
05 Feb 2023
Learning Interpolations between Boltzmann Densities
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
389
37
0
18 Jan 2023
Simulating first-order phase transition with hierarchical autoregressive
  networks
Simulating first-order phase transition with hierarchical autoregressive networksPhysical Review E (Phys. Rev. E), 2022
P. Białas
Paul A. Czarnota
P. Korcyl
T. Stebel
135
4
0
09 Dec 2022
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCDEuropean Physical Journal A (EPJ A), 2022
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
208
40
0
14 Nov 2022
Deformations of Boltzmann Distributions
Deformations of Boltzmann Distributions
Bálint Máté
Franccois Fleuret
OT
161
2
0
25 Oct 2022
Learning Lattice Quantum Field Theories with Equivariant Continuous
  Flows
Learning Lattice Quantum Field Theories with Equivariant Continuous FlowsSciPost Physics (SciPost Phys.), 2022
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
304
51
0
01 Jul 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Path-Gradient Estimators for Continuous Normalizing FlowsInternational Conference on Machine Learning (ICML), 2022
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
146
14
0
17 Jun 2022
Gradient estimators for normalising flows
Gradient estimators for normalising flows
P. Białas
P. Korcyl
T. Stebel
BDL
107
3
0
02 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte CarloInternational Conference on Machine Learning (ICML), 2022
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
336
65
0
31 Jan 2022
Stochastic normalizing flows as non-equilibrium transformations
Stochastic normalizing flows as non-equilibrium transformationsJournal of High Energy Physics (JHEP), 2022
M. Caselle
E. Cellini
A. Nada
M. Panero
207
38
0
21 Jan 2022
LeapfrogLayers: A Trainable Framework for Effective Topological Sampling
LeapfrogLayers: A Trainable Framework for Effective Topological Sampling
Sam Foreman
Xiao-Yong Jin
James C. Osborn
137
9
0
02 Dec 2021
Analysis of autocorrelation times in Neural Markov Chain Monte Carlo
  simulations
Analysis of autocorrelation times in Neural Markov Chain Monte Carlo simulationsPhysical Review E (PRE), 2021
P. Białas
P. Korcyl
T. Stebel
134
12
0
19 Nov 2021
Lattice gauge symmetry in neural networks
Lattice gauge symmetry in neural networks
Matteo Favoni
A. Ipp
David I. Müller
Daniel Schuh
AI4CE
116
0
0
08 Nov 2021
Machine learning spectral functions in lattice QCD
Machine learning spectral functions in lattice QCD
S.-Y. Chen
H. Ding
Yifan Zhang
G. Papp
C.-B. Yang
226
20
0
26 Oct 2021
Embedded-model flows: Combining the inductive biases of model-free deep
  learning and explicit probabilistic modeling
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modelingInternational Conference on Learning Representations (ICLR), 2021
Gianluigi Silvestri
Emily Fertig
David A. Moore
Luca Ambrogioni
BDLTPMAI4CE
309
4
0
12 Oct 2021
Scaling Up Machine Learning For Quantum Field Theory with Equivariant
  Continuous Flows
Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows
P. D. Haan
Corrado Rainone
Miranda C. N. Cheng
Roberto Bondesan
AI4CE
164
37
0
06 Oct 2021
A deep generative model for probabilistic energy forecasting in power
  systems: normalizing flows
A deep generative model for probabilistic energy forecasting in power systems: normalizing flowsApplied Energy (Appl. Energy), 2021
Jonathan Dumas
Antoine Wehenkel
Bertrand Cornélusse
Antonio Sutera
AI4TS
342
93
0
17 Jun 2021
A Probabilistic Forecast-Driven Strategy for a Risk-Aware Participation
  in the Capacity Firming Market: extended version
A Probabilistic Forecast-Driven Strategy for a Risk-Aware Participation in the Capacity Firming Market: extended versionIEEE Transactions on Sustainable Energy (IEEE Trans. Sustain. Energy), 2021
Jonathan Dumas
Colin Cointe
Antoine Wehenkel
Antonio Sutera
X. Fettweis
Bertrand Cornélusse
122
10
0
28 May 2021
Deep Learning Hamiltonian Monte Carlo
Deep Learning Hamiltonian Monte Carlo
Sam Foreman
Xiao-Yong Jin
James C. Osborn
86
16
0
07 May 2021
1