Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.08890
Cited By
Distilling Large Language Models into Tiny and Effective Students using pQRNN
21 January 2021
P. Kaliamoorthi
Aditya Siddhant
Edward Li
Melvin Johnson
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distilling Large Language Models into Tiny and Effective Students using pQRNN"
9 / 9 papers shown
Title
Too Brittle To Touch: Comparing the Stability of Quantization and Distillation Towards Developing Lightweight Low-Resource MT Models
Harshita Diddee
Sandipan Dandapat
Monojit Choudhury
T. Ganu
Kalika Bali
27
5
0
27 Oct 2022
Unsupervised Term Extraction for Highly Technical Domains
Francesco Fusco
Peter W. J. Staar
Diego Antognini
20
4
0
24 Oct 2022
pNLP-Mixer: an Efficient all-MLP Architecture for Language
Francesco Fusco
Damian Pascual
Peter W. J. Staar
Diego Antognini
26
29
0
09 Feb 2022
Tiny Neural Models for Seq2Seq
A. Kandoor
18
0
0
07 Aug 2021
Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better
Gaurav Menghani
VLM
MedIm
23
360
0
16 Jun 2021
Rethinking embedding coupling in pre-trained language models
Hyung Won Chung
Thibault Févry
Henry Tsai
Melvin Johnson
Sebastian Ruder
93
142
0
24 Oct 2020
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT
Sheng Shen
Zhen Dong
Jiayu Ye
Linjian Ma
Z. Yao
A. Gholami
Michael W. Mahoney
Kurt Keutzer
MQ
225
574
0
12 Sep 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,950
0
20 Apr 2018
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,740
0
26 Sep 2016
1