ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.09258
  4. Cited By
Maximum Likelihood Training of Score-Based Diffusion Models
v1v2v3v4 (latest)

Maximum Likelihood Training of Score-Based Diffusion Models

Neural Information Processing Systems (NeurIPS), 2021
22 January 2021
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Maximum Likelihood Training of Score-Based Diffusion Models"

50 / 516 papers shown
Speaking in Wavelet Domain: A Simple and Efficient Approach to Speed up
  Speech Diffusion Model
Speaking in Wavelet Domain: A Simple and Efficient Approach to Speed up Speech Diffusion Model
Xiangyu Zhang
Daijiao Liu
Hexin Liu
Qiquan Zhang
Hanyu Meng
Leibny Paola García
Chng Eng Siong
Lina Yao
DiffM
221
13
0
16 Feb 2024
Convergence Analysis of Discrete Diffusion Model: Exact Implementation
  through Uniformization
Convergence Analysis of Discrete Diffusion Model: Exact Implementation through Uniformization
Hongrui Chen
Lexing Ying
310
27
0
12 Feb 2024
Score-based Diffusion Models via Stochastic Differential Equations -- a Technical Tutorial
Score-based Diffusion Models via Stochastic Differential Equations -- a Technical TutorialStatistics Survey (Stat. Surv.), 2024
Wenpin Tang
Hanyang Zhao
DiffM
396
40
0
12 Feb 2024
Scalable Diffusion Models with State Space Backbone
Scalable Diffusion Models with State Space Backbone
Zhengcong Fei
Mingyuan Fan
Changqian Yu
Junshi Huang
359
47
0
08 Feb 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
435
19
0
08 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
714
41
0
07 Feb 2024
Guidance with Spherical Gaussian Constraint for Conditional Diffusion
Guidance with Spherical Gaussian Constraint for Conditional DiffusionInternational Conference on Machine Learning (ICML), 2024
Lingxiao Yang
Shutong Ding
Yifan Cai
Jingyi Yu
Jingya Wang
Ye-ling Shi
DiffM
350
68
0
05 Feb 2024
Bass Accompaniment Generation via Latent Diffusion
Bass Accompaniment Generation via Latent Diffusion
Marco Pasini
M. Grachten
Stefan Lattner
202
19
0
02 Feb 2024
Plug-and-Play image restoration with Stochastic deNOising REgularization
Plug-and-Play image restoration with Stochastic deNOising REgularization
Marien Renaud
Jean Prost
Arthur Leclaire
Nicolas Papadakis
DiffM
540
17
0
01 Feb 2024
Diffusion-based Graph Generative Methods
Diffusion-based Graph Generative MethodsIEEE Transactions on Knowledge and Data Engineering (TKDE), 2024
Hongyang Chen
Can Xu
Lingyu Zheng
Qiang Zhang
Xuemin Lin
DiffMMedIm
344
3
0
28 Jan 2024
Contractive Diffusion Probabilistic Models
Contractive Diffusion Probabilistic Models
Wenpin Tang
Hanyang Zhao
DiffM
309
23
0
23 Jan 2024
SiT: Exploring Flow and Diffusion-based Generative Models with Scalable
  Interpolant Transformers
SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant TransformersEuropean Conference on Computer Vision (ECCV), 2024
Nanye Ma
Mark Goldstein
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
Saining Xie
DiffM
375
423
0
16 Jan 2024
Demystifying Variational Diffusion Models
Demystifying Variational Diffusion Models
Fabio De Sousa Ribeiro
Ben Glocker
DiffM
298
0
0
11 Jan 2024
Reflected Schrödinger Bridge for Constrained Generative Modeling
Reflected Schrödinger Bridge for Constrained Generative Modeling
Wei Deng
Yu Chen
Nicole Tianjiao Yang
Hengrong Du
Qi Feng
Ricky T. Q. Chen
181
10
0
06 Jan 2024
Improving Diffusion-Based Image Synthesis with Context Prediction
Improving Diffusion-Based Image Synthesis with Context PredictionNeural Information Processing Systems (NeurIPS), 2024
Ling Yang
Jingwei Liu
Shenda Hong
Zhilong Zhang
Zhilin Huang
Zheming Cai
Wentao Zhang
Tengjiao Wang
DiffM
189
49
0
04 Jan 2024
Energy based diffusion generator for efficient sampling of Boltzmann distributions
Energy based diffusion generator for efficient sampling of Boltzmann distributionsNeural Networks (NN), 2024
Yan Wang
Ling Guo
Hao Wu
Tao Zhou
DiffM
508
6
0
04 Jan 2024
Diffusion Models, Image Super-Resolution And Everything: A Survey
Diffusion Models, Image Super-Resolution And Everything: A SurveyIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2024
Brian B. Moser
Arundhati S. Shanbhag
Federico Raue
Stanislav Frolov
Sebastián M. Palacio
Andreas Dengel
464
100
0
01 Jan 2024
Diffusion Model with Perceptual Loss
Diffusion Model with Perceptual Loss
Shanchuan Lin
Xiao Yang
DiffM
590
30
0
30 Dec 2023
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
253
8
0
27 Dec 2023
One-Dimensional Adapter to Rule Them All: Concepts, Diffusion Models and
  Erasing Applications
One-Dimensional Adapter to Rule Them All: Concepts, Diffusion Models and Erasing Applications
Mengyao Lyu
Yuhong Yang
Haiwen Hong
Hui Chen
Xuan Jin
Yuan He
Hui Xue
Jungong Han
Guiguang Ding
DiffM
315
112
0
26 Dec 2023
Diffusion Models With Learned Adaptive Noise
Diffusion Models With Learned Adaptive Noise
Subham Sekhar Sahoo
Aaron Gokaslan
Christopher De Sa
Volodymyr Kuleshov
DiffM
362
37
0
20 Dec 2023
Not All Steps are Equal: Efficient Generation with Progressive Diffusion
  Models
Not All Steps are Equal: Efficient Generation with Progressive Diffusion Models
Wenhao Li
Xiu Su
Shan You
Tao Huang
Haiwei Yang
Chao Qian
Chang Xu
DiffM
111
1
0
20 Dec 2023
Bayesian ECG reconstruction using denoising diffusion generative models
Bayesian ECG reconstruction using denoising diffusion generative models
Gabriel Victorino Cardoso
Lisa Bedin
J. Duchâteau
Rémi Dubois
Eric Moulines
DiffM
202
4
0
18 Dec 2023
Image Restoration Through Generalized Ornstein-Uhlenbeck Bridge
Image Restoration Through Generalized Ornstein-Uhlenbeck BridgeInternational Conference on Machine Learning (ICML), 2023
Conghan Yue
Zhengwei Peng
Junlong Ma
Shiyan Du
Pengxu Wei
Dongyu Zhang
DiffM
226
37
0
16 Dec 2023
Uncertainty Visualization via Low-Dimensional Posterior Projections
Uncertainty Visualization via Low-Dimensional Posterior ProjectionsComputer Vision and Pattern Recognition (CVPR), 2023
Omer Yair
E. Nehme
T. Michaeli
UQCV
298
3
0
12 Dec 2023
Equivariant Flow Matching with Hybrid Probability Transport
Equivariant Flow Matching with Hybrid Probability TransportNeural Information Processing Systems (NeurIPS), 2023
Yuxuan Song
Jingjing Gong
Minkai Xu
Ziyao Cao
Yanyan Lan
Stefano Ermon
Hao Zhou
Wei-Ying Ma
DiffM
305
83
0
12 Dec 2023
DiffuVST: Narrating Fictional Scenes with Global-History-Guided
  Denoising Models
DiffuVST: Narrating Fictional Scenes with Global-History-Guided Denoising ModelsConference on Empirical Methods in Natural Language Processing (EMNLP), 2023
Shengguang Wu
Mei Yuan
Qi Su
DiffM
137
0
0
12 Dec 2023
A Note on the Convergence of Denoising Diffusion Probabilistic Models
A Note on the Convergence of Denoising Diffusion Probabilistic Models
S. Mbacke
Omar Rivasplata
DiffM
266
7
0
10 Dec 2023
Generalized Contrastive Divergence: Joint Training of Energy-Based Model
  and Diffusion Model through Inverse Reinforcement Learning
Generalized Contrastive Divergence: Joint Training of Energy-Based Model and Diffusion Model through Inverse Reinforcement Learning
Sangwoong Yoon
Dohyun Kwon
Himchan Hwang
Yung-Kyun Noh
Frank C. Park
371
0
0
06 Dec 2023
DPHMs: Diffusion Parametric Head Models for Depth-based Tracking
DPHMs: Diffusion Parametric Head Models for Depth-based TrackingComputer Vision and Pattern Recognition (CVPR), 2023
Jiapeng Tang
Angela Dai
Yinyu Nie
Lev Markhasin
Justus Thies
Matthias Niessner
DiffM
611
11
0
02 Dec 2023
Bayesian Imaging for Radio Interferometry with Score-Based Priors
Bayesian Imaging for Radio Interferometry with Score-Based Priors
Noé Dia
M. J. Yantovski-Barth
Alexandre Adam
Micah Bowles
Pablo Lemos
A. Scaife
Y. Hezaveh
Laurence Perreault Levasseur
238
4
0
29 Nov 2023
Echoes in the Noise: Posterior Samples of Faint Galaxy Surface
  Brightness Profiles with Score-Based Likelihoods and Priors
Echoes in the Noise: Posterior Samples of Faint Galaxy Surface Brightness Profiles with Score-Based Likelihoods and PriorsAstronomical Journal (AJ), 2023
Alexandre Adam
Connor Stone
Connor Bottrell
Ronan Legin
Y. Hezaveh
Laurence Perreault Levasseur
523
4
0
29 Nov 2023
Closing the ODE-SDE gap in score-based diffusion models through the
  Fokker-Planck equation
Closing the ODE-SDE gap in score-based diffusion models through the Fokker-Planck equation
Teo Deveney
Jan Stanczuk
L. Kreusser
Chris Budd
Carola-Bibiane Schönlieb
DiffM
174
10
0
27 Nov 2023
Enhancing Diffusion Models with Text-Encoder Reinforcement Learning
Enhancing Diffusion Models with Text-Encoder Reinforcement LearningEuropean Conference on Computer Vision (ECCV), 2023
Chaofeng Chen
Annan Wang
Haoning Wu
Liang Liao
Wenxiu Sun
Qiong Yan
Weisi Lin
178
25
0
27 Nov 2023
Improved Sample Complexity Bounds for Diffusion Model Training
Improved Sample Complexity Bounds for Diffusion Model TrainingNeural Information Processing Systems (NeurIPS), 2023
Shivam Gupta
Aditya Parulekar
Eric Price
Zhiyang Xun
445
11
0
23 Nov 2023
Diffusion Model Alignment Using Direct Preference Optimization
Diffusion Model Alignment Using Direct Preference OptimizationComputer Vision and Pattern Recognition (CVPR), 2023
Bram Wallace
Meihua Dang
Rafael Rafailov
Linqi Zhou
Aaron Lou
Senthil Purushwalkam
Stefano Ermon
Caiming Xiong
Shafiq Joty
Nikhil Naik
EGVM
449
516
0
21 Nov 2023
Adversarial Purification for Data-Driven Power System Event Classifiers
  with Diffusion Models
Adversarial Purification for Data-Driven Power System Event Classifiers with Diffusion ModelsIEEE Transactions on Power Systems (IEEE Trans. Power Syst.), 2023
Yuanbin Cheng
Koji Yamashita
Jim Follum
Nanpeng Yu
AAML
249
2
0
13 Nov 2023
Energy-Calibrated VAE with Test Time Free Lunch
Energy-Calibrated VAE with Test Time Free LunchEuropean Conference on Computer Vision (ECCV), 2023
Yihong Luo
Si-Huang Qiu
Xingjian Tao
Yujun Cai
Jing Tang
650
4
0
07 Nov 2023
Reducing Spatial Fitting Error in Distillation of Denoising Diffusion
  Models
Reducing Spatial Fitting Error in Distillation of Denoising Diffusion ModelsAAAI Conference on Artificial Intelligence (AAAI), 2023
Shengzhe Zhou
Zejian Lee
Sheng Zhang
Lefan Hou
Changyuan Yang
Guang Yang
Zhiyuan Yang
Lingyun Sun
DiffM
267
1
0
07 Nov 2023
DiffEnc: Variational Diffusion with a Learned Encoder
DiffEnc: Variational Diffusion with a Learned EncoderInternational Conference on Learning Representations (ICLR), 2023
Beatrix M. G. Nielsen
Anders Christensen
Andrea Dittadi
Ole Winther
DiffM
392
16
0
30 Oct 2023
Purify++: Improving Diffusion-Purification with Advanced Diffusion
  Models and Control of Randomness
Purify++: Improving Diffusion-Purification with Advanced Diffusion Models and Control of Randomness
Boya Zhang
Weijian Luo
Zhihua Zhang
232
16
0
28 Oct 2023
Convergence of flow-based generative models via proximal gradient
  descent in Wasserstein space
Convergence of flow-based generative models via proximal gradient descent in Wasserstein spaceIEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2023
Xiuyuan Cheng
Jianfeng Lu
Yixin Tan
Yao Xie
599
30
0
26 Oct 2023
Improving Denoising Diffusion Models via Simultaneous Estimation of
  Image and Noise
Improving Denoising Diffusion Models via Simultaneous Estimation of Image and NoiseAsian Conference on Machine Learning (ACML), 2023
Zhenkai Zhang
Krista A. Ehinger
Tom Drummond
DiffM
216
0
0
26 Oct 2023
Discrete Diffusion Modeling by Estimating the Ratios of the Data
  Distribution
Discrete Diffusion Modeling by Estimating the Ratios of the Data DistributionInternational Conference on Machine Learning (ICML), 2023
Aaron Lou
Chenlin Meng
Stefano Ermon
DiffM
434
304
0
25 Oct 2023
DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model
  Statistics
DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics
Kaiwen Zheng
Cheng Lu
Jianfei Chen
Jun Zhu
DiffM
417
144
0
20 Oct 2023
A Survey on Video Diffusion Models
A Survey on Video Diffusion ModelsACM Computing Surveys (ACM Comput. Surv.), 2023
Zhen Xing
Qijun Feng
Haoran Chen
Jingdong Sun
Hang-Rui Hu
Hang Xu
Zuxuan Wu
Yu-Gang Jiang
EGVMVGen
445
220
0
16 Oct 2023
Neural Diffusion Models
Neural Diffusion ModelsInternational Conference on Machine Learning (ICML), 2023
Grigory Bartosh
Dmitry Vetrov
C. A. Naesseth
DiffM
373
15
0
12 Oct 2023
Generative Modeling with Phase Stochastic Bridges
Generative Modeling with Phase Stochastic BridgesInternational Conference on Learning Representations (ICLR), 2023
Tianrong Chen
Jiatao Gu
Laurent Dinh
Evangelos A. Theodorou
J. Susskind
Shuangfei Zhai
DiffM
302
23
0
11 Oct 2023
Imitation Learning from Purified Demonstration
Imitation Learning from Purified DemonstrationInternational Conference on Machine Learning (ICML), 2023
Yunke Wang
Minjing Dong
Bo Du
Chang Xu
199
1
0
11 Oct 2023
Investigating the Adversarial Robustness of Density Estimation Using the
  Probability Flow ODE
Investigating the Adversarial Robustness of Density Estimation Using the Probability Flow ODE
Marius Arvinte
Cory Cornelius
Jason Martin
N. Himayat
DiffM
293
5
0
10 Oct 2023
Previous
123...567...91011
Next