ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.10943
  4. Cited By
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
  to Learning Algorithms
v1v2 (latest)

Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms

International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
26 January 2021
Alicia Curth
M. Schaar
    CML
ArXiv (abs)PDFHTML

Papers citing "Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms"

50 / 118 papers shown
Title
Heterogeneous Multi-treatment Uplift Modeling for Trade-off Optimization in Short-Video Recommendation
Heterogeneous Multi-treatment Uplift Modeling for Trade-off Optimization in Short-Video Recommendation
Chenhao Zhai
Chang Meng
Xueliang Wang
Shuchang Liu
Xiaolong Hu
Shisong Tang
Xiaoqiang Feng
Xiu Li
OffRL
202
0
0
24 Nov 2025
DeepBlip: Estimating Conditional Average Treatment Effects Over Time
DeepBlip: Estimating Conditional Average Treatment Effects Over Time
Haorui Ma
Dennis Frauen
Stefan Feuerriegel
BDL
143
0
0
18 Nov 2025
Semi-Supervised Treatment Effect Estimation with Unlabeled Covariates via Generalized Riesz Regression
Semi-Supervised Treatment Effect Estimation with Unlabeled Covariates via Generalized Riesz Regression
Masahiro Kato
CML
181
0
0
11 Nov 2025
Estimating Treatment Effects in Networks using Domain Adversarial Training
Estimating Treatment Effects in Networks using Domain Adversarial Training
Daan Caljon
Jente Van Belle
Wouter Verbeke
CML
107
0
0
24 Oct 2025
Overlap-weighted orthogonal meta-learner for treatment effect estimation over time
Overlap-weighted orthogonal meta-learner for treatment effect estimation over time
Konstantin Hess
Dennis Frauen
M. Schaar
Stefan Feuerriegel
60
0
0
22 Oct 2025
Improving the Generation and Evaluation of Synthetic Data for Downstream Medical Causal Inference
Improving the Generation and Evaluation of Synthetic Data for Downstream Medical Causal Inference
Harry Amad
Zhaozhi Qian
Dennis Frauen
Julianna Piskorz
Stefan Feuerriegel
Mihaela van der Schaar
CML
131
1
0
21 Oct 2025
Meta-Router: Bridging Gold-standard and Preference-based Evaluations in Large Language Model Routing
Meta-Router: Bridging Gold-standard and Preference-based Evaluations in Large Language Model Routing
Yichi Zhang
Fangzheng Xie
Shu Yang
Chong Wu
52
0
0
29 Sep 2025
Overlap-Adaptive Regularization for Conditional Average Treatment Effect Estimation
Overlap-Adaptive Regularization for Conditional Average Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Jonas Schweisthal
Stefan Feuerriegel
CML
87
0
0
29 Sep 2025
GDR-learners: Orthogonal Learning of Generative Models for Potential Outcomes
GDR-learners: Orthogonal Learning of Generative Models for Potential Outcomes
Valentyn Melnychuk
Stefan Feuerriegel
58
0
0
26 Sep 2025
CausalKANs: interpretable treatment effect estimation with Kolmogorov-Arnold networks
CausalKANs: interpretable treatment effect estimation with Kolmogorov-Arnold networks
Alejandro Almodóvar
Patricia A. Apellániz
Santiago Zazo
J. Parras
CML
182
0
0
26 Sep 2025
A Systematic Review of Conformal Inference Procedures for Treatment Effect Estimation: Methods and Challenges
A Systematic Review of Conformal Inference Procedures for Treatment Effect Estimation: Methods and Challenges
Pascal Memmesheimer
Vincent Heuveline
Jürgen Hesser
CML
61
0
0
25 Sep 2025
Counterfactual Probabilistic Diffusion with Expert Models
Counterfactual Probabilistic Diffusion with Expert Models
Wenhao Mu
Zhi Cao
Mehmed Uludag
Alexander Rodríguez
DiffM
120
1
0
18 Aug 2025
Personalized Treatment Effect Estimation from Unstructured Data
Personalized Treatment Effect Estimation from Unstructured Data
Henri Arno
Thomas Demeester
CML
102
0
0
28 Jul 2025
Robust estimation of heterogeneous treatment effects in randomized trials leveraging external data
Robust estimation of heterogeneous treatment effects in randomized trials leveraging external data
R. Karlsson
Piersilvio De Bartolomeis
Issa J. Dahabreh
Jesse H. Krijthe
CML
82
0
0
04 Jul 2025
LLM-Driven Treatment Effect Estimation Under Inference Time Text Confounding
LLM-Driven Treatment Effect Estimation Under Inference Time Text Confounding
Yuchen Ma
Dennis Frauen
Jonas Schweisthal
Stefan Feuerriegel
CML
119
2
0
03 Jul 2025
Hybrid Meta-learners for Estimating Heterogeneous Treatment Effects
Hybrid Meta-learners for Estimating Heterogeneous Treatment Effects
Zhongyuan Liang
L. Laan
Ahmed Alaa
141
0
0
16 Jun 2025
Foundation Models for Causal Inference via Prior-Data Fitted Networks
Foundation Models for Causal Inference via Prior-Data Fitted Networks
Yuchen Ma
Dennis Frauen
Emil Javurek
Stefan Feuerriegel
CMLAI4CE
339
7
0
12 Jun 2025
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Vahid Balazadeh
Hamidreza Kamkari
Valentin Thomas
Benson Li
Junwei Ma
Jesse C. Cresswell
Rahul G. Krishnan
CML
138
5
0
09 Jun 2025
PrivATE: Differentially Private Confidence Intervals for Average Treatment Effects
PrivATE: Differentially Private Confidence Intervals for Average Treatment Effects
Maresa Schröder
Justin Hartenstein
Stefan Feuerriegel
215
0
0
27 May 2025
A Distributionally Robust Framework for Nuisance in Causal Effect Estimation
A Distributionally Robust Framework for Nuisance in Causal Effect Estimation
Akira Tanimoto
150
0
0
23 May 2025
Deconfounded Warm-Start Thompson Sampling with Applications to Precision Medicine
Deconfounded Warm-Start Thompson Sampling with Applications to Precision Medicine
Prateek Jaiswal
Esmaeil Keyvanshokooh
Junyu Cao
179
0
0
22 May 2025
PO-Flow: Flow-based Generative Models for Sampling Potential Outcomes and Counterfactuals
PO-Flow: Flow-based Generative Models for Sampling Potential Outcomes and Counterfactuals
Dongze Wu
David I. Inouye
Yao Xie
197
1
0
21 May 2025
Orthogonal Survival Learners for Estimating Heterogeneous Treatment Effects from Time-to-Event Data
Orthogonal Survival Learners for Estimating Heterogeneous Treatment Effects from Time-to-Event Data
Dennis Frauen
Maresa Schröder
Konstantin Hess
Stefan Feuerriegel
CML
195
2
0
19 May 2025
Treatment Effect Estimation for Optimal Decision-Making
Treatment Effect Estimation for Optimal Decision-Making
Dennis Frauen
Valentyn Melnychuk
Jonas Schweisthal
Mihaela van der Schaar
Stefan Feuerriegel
CML
207
1
0
19 May 2025
A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation
A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation
Xinran Song
Tianyu Chen
Mingyuan Zhou
DiffMCML
210
0
0
16 May 2025
Forests for Differences: Robust Causal Inference Beyond Parametric DiD
Forests for Differences: Robust Causal Inference Beyond Parametric DiD
Hugo Gobato Souto
Francisco Louzada Neto
132
0
0
14 May 2025
The Hardness of Validating Observational Studies with Experimental Data
The Hardness of Validating Observational Studies with Experimental DataInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2025
Jake Fawkes
Michael O'Riordan
Athanasios Vlontzos
Oriol Corcoll
Ciarán M. Gilligan-Lee
244
3
0
19 Mar 2025
Differentially Private Learners for Heterogeneous Treatment EffectsInternational Conference on Learning Representations (ICLR), 2025
Maresa Schröder
Valentyn Melnychuk
Stefan Feuerriegel
CML
297
2
0
05 Mar 2025
Long-term Causal Inference via Modeling Sequential Latent Confounding
Long-term Causal Inference via Modeling Sequential Latent Confounding
Weilin Chen
Ruichu Cai
Yuguang Yan
Zijian Li
José Miguel Hernández-Lobato
CML
389
1
0
26 Feb 2025
Nonparametric Heterogeneous Long-term Causal Effect Estimation via Data Combination
Nonparametric Heterogeneous Long-term Causal Effect Estimation via Data Combination
Weilin Chen
Ruichu Cai
Junjie Wan
Zeqin Yang
José Miguel Hernández-Lobato
314
2
0
26 Feb 2025
Orthogonal Representation Learning for Estimating Causal Quantities
Orthogonal Representation Learning for Estimating Causal Quantities
Valentyn Melnychuk
Dennis Frauen
Jonas Schweisthal
Stefan Feuerriegel
CMLOODBDL
378
5
0
06 Feb 2025
A Deep Subgrouping Framework for Precision Drug Repurposing via Emulating Clinical Trials on Real-world Patient Data
A Deep Subgrouping Framework for Precision Drug Repurposing via Emulating Clinical Trials on Real-world Patient DataKnowledge Discovery and Data Mining (KDD), 2024
Seungyeon Lee
Ruoqi Liu
Feixiong Cheng
Ping Zhang
150
2
0
31 Dec 2024
Constructing Confidence Intervals for Average Treatment Effects from Multiple Datasets
Constructing Confidence Intervals for Average Treatment Effects from Multiple DatasetsInternational Conference on Learning Representations (ICLR), 2024
Yuxin Wang
Maresa Schröder
Dennis Frauen
Jonas Schweisthal
Konstantin Hess
Stefan Feuerriegel
CML
409
5
0
16 Dec 2024
Minimax Regret Estimation for Generalizing Heterogeneous Treatment
  Effects with Multisite Data
Minimax Regret Estimation for Generalizing Heterogeneous Treatment Effects with Multisite Data
Yi Zhang
Melody Huang
Kosuke Imai
CML
261
2
0
15 Dec 2024
Estimating the treatment effect over time under general interference
  through deep learner integrated TMLE
Estimating the treatment effect over time under general interference through deep learner integrated TMLE
Suhan Guo
Furao Shen
Ni Li
CML
299
0
0
06 Dec 2024
Who's Gaming the System? A Causally-Motivated Approach for Detecting
  Strategic Adaptation
Who's Gaming the System? A Causally-Motivated Approach for Detecting Strategic AdaptationNeural Information Processing Systems (NeurIPS), 2024
Trenton Chang
Lindsay Warrenburg
Sae-Hwan Park
Ravi B. Parikh
Maggie Makar
Jenna Wiens
286
4
0
02 Dec 2024
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal LearnerNeural Information Processing Systems (NeurIPS), 2024
Valentyn Melnychuk
Stefan Feuerriegel
Mihaela van der Schaar
CML
439
5
0
05 Nov 2024
DiffPO: A causal diffusion model for learning distributions of potential
  outcomes
DiffPO: A causal diffusion model for learning distributions of potential outcomesNeural Information Processing Systems (NeurIPS), 2024
Yuchen Ma
Valentyn Melnychuk
Jonas Schweisthal
Stefan Feuerriegel
DiffM
332
15
0
11 Oct 2024
Uncertainty-Aware Optimal Treatment Selection for Clinical Time Series
Uncertainty-Aware Optimal Treatment Selection for Clinical Time Series
Thomas Schwarz
Cecilia Casolo
Niki Kilbertus
CML
241
0
0
11 Oct 2024
Causal machine learning for predicting treatment outcomes
Causal machine learning for predicting treatment outcomesNature Network Boston (NNB), 2024
Stefan Feuerriegel
Dennis Frauen
Valentyn Melnychuk
Jonas Schweisthal
Konstantin Hess
Alicia Curth
Stefan Bauer
Niki Kilbertus
Isaac S. Kohane
Mihaela van der Schaar
CML
298
208
0
11 Oct 2024
Stabilized Neural Prediction of Potential Outcomes in Continuous Time
Stabilized Neural Prediction of Potential Outcomes in Continuous TimeInternational Conference on Learning Representations (ICLR), 2024
Konstantin Hess
Stefan Feuerriegel
423
3
0
04 Oct 2024
Learning Personalized Treatment Decisions in Precision Medicine:
  Disentangling Treatment Assignment Bias in Counterfactual Outcome Prediction
  and Biomarker Identification
Learning Personalized Treatment Decisions in Precision Medicine: Disentangling Treatment Assignment Bias in Counterfactual Outcome Prediction and Biomarker Identification
Michael Vollenweider
Manuel Schürch
Chiara Rohrer
Gabriele Gut
Michael Krauthammer
Andreas Wicki
CML
238
0
0
01 Oct 2024
From Text to Treatment Effects: A Meta-Learning Approach to Handling
  Text-Based Confounding
From Text to Treatment Effects: A Meta-Learning Approach to Handling Text-Based Confounding
Stefan Heytens
Paloma Rabaey
Thomas Demeester
CML
337
2
0
23 Sep 2024
Benchmarking Estimators for Natural Experiments: A Novel Dataset and a
  Doubly Robust Algorithm
Benchmarking Estimators for Natural Experiments: A Novel Dataset and a Doubly Robust AlgorithmNeural Information Processing Systems (NeurIPS), 2024
R. Teal Witter
Christopher Musco
196
1
0
06 Sep 2024
Estimating Conditional Average Treatment Effects via Sufficient
  Representation Learning
Estimating Conditional Average Treatment Effects via Sufficient Representation LearningInternational Joint Conference on Artificial Intelligence (IJCAI), 2024
Pengfei Shi
Wei Zhong
Xinyu Zhang
Ningtao Wang
Xing Fu
Weiqiang Wang
Yin Jin
CMLBDL
90
0
0
30 Aug 2024
Model-agnostic meta-learners for estimating heterogeneous treatment effects over time
Model-agnostic meta-learners for estimating heterogeneous treatment effects over time
Dennis Frauen
Konstantin Hess
Stefan Feuerriegel
320
13
0
07 Jul 2024
Improve ROI with Causal Learning and Conformal Prediction
Improve ROI with Causal Learning and Conformal Prediction
Meng Ai
Zhuo Chen
Jibin Wang
Jing Shang
Tao Tao
Zhen Li
186
2
0
01 Jul 2024
Compositional Models for Estimating Causal Effects
Compositional Models for Estimating Causal Effects
Purva Pruthi
David D. Jensen
CML
375
0
0
25 Jun 2024
Enhancing predictive imaging biomarker discovery through treatment
  effect analysis
Enhancing predictive imaging biomarker discovery through treatment effect analysis
Shuhan Xiao
Lukas Klein
Jens Petersen
Philipp Vollmuth
Paul F. Jaeger
Klaus H. Maier-Hein
138
1
0
04 Jun 2024
Meta-Learners for Partially-Identified Treatment Effects Across Multiple
  Environments
Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments
Jonas Schweisthal
Dennis Frauen
M. Schaar
Stefan Feuerriegel
CML
242
8
0
04 Jun 2024
123
Next