Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.11588
Cited By
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
27 January 2021
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks"
8 / 8 papers shown
Title
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
33
0
0
10 Jan 2025
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Luis Barroso-Luque
Muhammed Shuaibi
Xiang Fu
Brandon M. Wood
Misko Dzamba
Meng Gao
Ammar Rizvi
C. L. Zitnick
Zachary W. Ulissi
AI4CE
PINN
38
16
0
16 Oct 2024
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
41
64
0
09 Oct 2022
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni de Fabritiis
T. Markland
27
105
0
21 Sep 2022
Excited state, non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
26
49
0
10 Aug 2021
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
Stephan Thaler
J. Zavadlav
20
66
0
02 Jun 2021
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
100
49
0
27 Feb 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1