ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.01010
  4. Cited By
Machine learning accelerated computational fluid dynamics

Machine learning accelerated computational fluid dynamics

28 January 2021
Dmitrii Kochkov
Jamie A. Smith
Ayya Alieva
Qing Wang
M. Brenner
Stephan Hoyer
    AI4CE
ArXivPDFHTML

Papers citing "Machine learning accelerated computational fluid dynamics"

50 / 298 papers shown
Title
Latent Neural ODEs with Sparse Bayesian Multiple Shooting
Latent Neural ODEs with Sparse Bayesian Multiple Shooting
V. Iakovlev
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
BDL
25
11
0
07 Oct 2022
MultiScale MeshGraphNets
MultiScale MeshGraphNets
Meire Fortunato
Tobias Pfaff
Peter Wirnsberger
Alexander Pritzel
Peter W. Battaglia
AI4CE
25
68
0
02 Oct 2022
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
53
117
0
30 Sep 2022
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Yuan Yin
Matthieu Kirchmeyer
Jean-Yves Franceschi
A. Rakotomamonjy
Patrick Gallinari
AI4CE
17
48
0
29 Sep 2022
Differentiable physics-enabled closure modeling for Burgers' turbulence
Differentiable physics-enabled closure modeling for Burgers' turbulence
Varun Shankar
V. Puri
R. Balakrishnan
R. Maulik
V. Viswanathan
AI4CE
9
15
0
23 Sep 2022
Clifford Neural Layers for PDE Modeling
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
60
79
0
08 Sep 2022
Differentiable Programming for Earth System Modeling
Differentiable Programming for Earth System Modeling
Maximilian Gelbrecht
Alistair J R White
S. Bathiany
Niklas Boers
11
15
0
29 Aug 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned
  Force Fields
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
11
11
0
25 Aug 2022
DeepClouds.ai: Deep learning enabled computationally cheap direct
  numerical simulations
DeepClouds.ai: Deep learning enabled computationally cheap direct numerical simulations
M. Bhowmik
Manmeet Singh
Suryachandra A. Rao
S. Paul
AI4CE
15
3
0
18 Aug 2022
Deep convolutional surrogates and degrees of freedom in thermal design
Deep convolutional surrogates and degrees of freedom in thermal design
Hadi Keramati
F. Hamdullahpur
AI4CE
31
0
0
16 Aug 2022
A Model-Constrained Tangent Slope Learning Approach for Dynamical
  Systems
A Model-Constrained Tangent Slope Learning Approach for Dynamical Systems
Hai V. Nguyen
T. Bui-Thanh
23
2
0
09 Aug 2022
Physics-informed Deep Super-resolution for Spatiotemporal Data
Physics-informed Deep Super-resolution for Spatiotemporal Data
Pu Ren
Chengping Rao
Yang Liu
Zihan Ma
Qi Wang
Jianxin Wang
Hao-Lun Sun
24
13
0
02 Aug 2022
Learning to correct spectral methods for simulating turbulent flows
Learning to correct spectral methods for simulating turbulent flows
Gideon Dresdner
Dmitrii Kochkov
Peter C. Norgaard
Leonardo Zepeda-Núnez
Jamie A. Smith
M. Brenner
Stephan Hoyer
AI4CE
12
56
0
01 Jul 2022
Deep Learning and Symbolic Regression for Discovering Parametric
  Equations
Deep Learning and Symbolic Regression for Discovering Parametric Equations
Michael Zhang
Samuel Kim
Peter Y. Lu
M. Soljavcić
24
18
0
01 Jul 2022
j-Wave: An open-source differentiable wave simulator
j-Wave: An open-source differentiable wave simulator
A. Stanziola
Simon Arridge
B. Cox
B. Treeby
VLM
28
21
0
30 Jun 2022
Studying Generalization Through Data Averaging
Studying Generalization Through Data Averaging
C. Gomez-Uribe
FedML
19
0
0
28 Jun 2022
Learning to Estimate and Refine Fluid Motion with Physical Dynamics
Learning to Estimate and Refine Fluid Motion with Physical Dynamics
Mingrui Zhang
Jianhong Wang
James Tlhomole
M. Piggott
22
10
0
21 Jun 2022
LordNet: An Efficient Neural Network for Learning to Solve Parametric
  Partial Differential Equations without Simulated Data
LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data
Xinquan Huang
Wenlei Shi
Xiaotian Gao
Xinran Wei
Jia Zhang
Jiang Bian
Mao Yang
Tie-Yan Liu
PINN
25
10
0
19 Jun 2022
Learning to Accelerate Partial Differential Equations via Latent Global
  Evolution
Learning to Accelerate Partial Differential Equations via Latent Global Evolution
Tailin Wu
Takashi Maruyama
J. Leskovec
AI4CE
28
28
0
15 Jun 2022
Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
  Simulator
Learning Large-scale Subsurface Simulations with a Hybrid Graph Network Simulator
Tailin Wu
Qinchen Wang
Yinan Zhang
Rex Ying
Kaidi Cao
Rok Sosivc
Ridwan Jalali
Hassan H. Hamam
M. Maučec
J. Leskovec
PINN
AI4CE
9
24
0
15 Jun 2022
Simple lessons from complex learning: what a neural network model learns
  about cosmic structure formation
Simple lessons from complex learning: what a neural network model learns about cosmic structure formation
Drew Jamieson
Yin Li
Siyu He
F. Villaescusa-Navarro
S. Ho
R. A. Oliveira
D. Spergel
14
4
0
09 Jun 2022
Explaining the physics of transfer learning a data-driven subgrid-scale
  closure to a different turbulent flow
Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow
Adam Subel
Yifei Guan
A. Chattopadhyay
P. Hassanzadeh
AI4CE
27
41
0
07 Jun 2022
Unsupervised Discovery of Inertial-Fusion Plasma Physics using
  Differentiable Kinetic Simulations and a Maximum Entropy Loss Function
Unsupervised Discovery of Inertial-Fusion Plasma Physics using Differentiable Kinetic Simulations and a Maximum Entropy Loss Function
A. Joglekar
Alec G. R. Thomas
14
6
0
03 Jun 2022
Learning to Solve PDE-constrained Inverse Problems with Graph Networks
Learning to Solve PDE-constrained Inverse Problems with Graph Networks
Qingqing Zhao
David B. Lindell
Gordon Wetzstein
AI4CE
31
40
0
01 Jun 2022
Physical Activation Functions (PAFs): An Approach for More Efficient
  Induction of Physics into Physics-Informed Neural Networks (PINNs)
Physical Activation Functions (PAFs): An Approach for More Efficient Induction of Physics into Physics-Informed Neural Networks (PINNs)
J. Abbasi
Paal Ostebo Andersen
PINN
AI4CE
25
13
0
29 May 2022
Flow Completion Network: Inferring the Fluid Dynamics from Incomplete
  Flow Information using Graph Neural Networks
Flow Completion Network: Inferring the Fluid Dynamics from Incomplete Flow Information using Graph Neural Networks
Xiaodong He
Yinan Wang
Juan Li
GNN
14
19
0
10 May 2022
Multi-resolution partial differential equations preserved learning
  framework for spatiotemporal dynamics
Multi-resolution partial differential equations preserved learning framework for spatiotemporal dynamics
Xin-Yang Liu
Min Zhu
Lu Lu
Hao Sun
Jian-Xun Wang
PINN
AI4CE
22
45
0
09 May 2022
DropTrack -- automatic droplet tracking using deep learning for
  microfluidic applications
DropTrack -- automatic droplet tracking using deep learning for microfluidic applications
M. Durve
A. Tiribocchi
F. Bonaccorso
A. Montessori
M. Lauricella
Michał Bogdan
J. Guzowski
S. Succi
VOT
17
17
0
05 May 2022
Learning Green's functions associated with time-dependent partial
  differential equations
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
21
25
0
27 Apr 2022
STONet: A Neural-Operator-Driven Spatio-temporal Network
STONet: A Neural-Operator-Driven Spatio-temporal Network
Haitao Lin
Guojiang Zhao
Lirong Wu
Stan Z. Li
AI4TS
AI4CE
11
1
0
18 Apr 2022
Learning time-dependent PDE solver using Message Passing Graph Neural
  Networks
Learning time-dependent PDE solver using Message Passing Graph Neural Networks
Pourya Pilva
A. Zareei
AI4CE
25
6
0
15 Apr 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
21
84
0
13 Apr 2022
A posteriori learning for quasi-geostrophic turbulence parametrization
A posteriori learning for quasi-geostrophic turbulence parametrization
Hugo Frezat
Julien Le Sommer
Ronan Fablet
G. Balarac
Redouane Lguensat
14
56
0
08 Apr 2022
Monarch: Expressive Structured Matrices for Efficient and Accurate
  Training
Monarch: Expressive Structured Matrices for Efficient and Accurate Training
Tri Dao
Beidi Chen
N. Sohoni
Arjun D Desai
Michael Poli
Jessica Grogan
Alexander Liu
Aniruddh Rao
Atri Rudra
Christopher Ré
13
87
0
01 Apr 2022
Learned coupled inversion for carbon sequestration monitoring and
  forecasting with Fourier neural operators
Learned coupled inversion for carbon sequestration monitoring and forecasting with Fourier neural operators
Ziyi Yin
Ali Siahkoohi
M. Louboutin
Felix J. Herrmann
34
17
0
27 Mar 2022
JAX-FLUIDS: A fully-differentiable high-order computational fluid
  dynamics solver for compressible two-phase flows
JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows
Deniz A. Bezgin
Aaron B. Buhendwa
Nikolaus A. Adams
AI4CE
11
65
0
25 Mar 2022
Half-Inverse Gradients for Physical Deep Learning
Half-Inverse Gradients for Physical Deep Learning
Patrick Schnell
Philipp Holl
Nils Thuerey
8
7
0
18 Mar 2022
SocialVAE: Human Trajectory Prediction using Timewise Latents
SocialVAE: Human Trajectory Prediction using Timewise Latents
Pei Xu
J. Hayet
Ioannis Karamouzas
11
83
0
15 Mar 2022
Respecting causality is all you need for training physics-informed
  neural networks
Respecting causality is all you need for training physics-informed neural networks
Sifan Wang
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
30
198
0
14 Mar 2022
Local neural operator for solving transient partial differential
  equations on varied domains
Local neural operator for solving transient partial differential equations on varied domains
Hongyu Li
Ximeng Ye
Pengjie Jiang
G. Qin
Tiejun Wang
AI4CE
6
6
0
11 Mar 2022
Neural Galerkin Schemes with Active Learning for High-Dimensional
  Evolution Equations
Neural Galerkin Schemes with Active Learning for High-Dimensional Evolution Equations
Joan Bruna
Benjamin Peherstorfer
Eric Vanden-Eijnden
11
60
0
02 Mar 2022
Learning the nonlinear dynamics of soft mechanical metamaterials with
  graph networks
Learning the nonlinear dynamics of soft mechanical metamaterials with graph networks
Tianju Xue
S. Adriaenssens
S. Mao
AI4CE
4
26
0
24 Feb 2022
Lie Point Symmetry Data Augmentation for Neural PDE Solvers
Lie Point Symmetry Data Augmentation for Neural PDE Solvers
Johannes Brandstetter
Max Welling
Daniel E. Worrall
AI4CE
23
54
0
15 Feb 2022
Forecasting Global Weather with Graph Neural Networks
Forecasting Global Weather with Graph Neural Networks
R. Keisler
AI4Cl
26
159
0
15 Feb 2022
Machine Learning in Aerodynamic Shape Optimization
Machine Learning in Aerodynamic Shape Optimization
Ji-chao Li
Xiaosong Du
J. Martins
AI4CE
13
184
0
15 Feb 2022
Learned Turbulence Modelling with Differentiable Fluid Solvers:
  Physics-based Loss-functions and Optimisation Horizons
Learned Turbulence Modelling with Differentiable Fluid Solvers: Physics-based Loss-functions and Optimisation Horizons
Bjorn List
Li-Wei Chen
Nils Thuerey
18
55
0
14 Feb 2022
Applications of Machine Learning to Lattice Quantum Field Theory
Applications of Machine Learning to Lattice Quantum Field Theory
D. Boyda
Salvatore Cali
Sam Foreman
L. Funcke
D. Hackett
...
Gert Aarts
A. Alexandru
Xiao-Yong Jin
B. Lucini
P. Shanahan
AI4CE
16
19
0
10 Feb 2022
AD-NEGF: An End-to-End Differentiable Quantum Transport Simulator for
  Sensitivity Analysis and Inverse Problems
AD-NEGF: An End-to-End Differentiable Quantum Transport Simulator for Sensitivity Analysis and Inverse Problems
Ying Zhou
Xiang Chen
Peng Zhang
Jun Wang
Lei Wang
Hongfeng Guo
11
1
0
10 Feb 2022
Deep Neural Networks to Correct Sub-Precision Errors in CFD
Deep Neural Networks to Correct Sub-Precision Errors in CFD
Akash Haridas
N. R. Vadlamani
Y. Minamoto
13
4
0
09 Feb 2022
Physical Design using Differentiable Learned Simulators
Physical Design using Differentiable Learned Simulators
Kelsey R. Allen
Tatiana López-Guevara
Kimberly L. Stachenfeld
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Jessica B. Hamrick
Tobias Pfaff
AI4CE
19
42
0
01 Feb 2022
Previous
123456
Next