Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.03322
Cited By
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
5 February 2021
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks"
18 / 18 papers shown
Title
Robustness questions the interpretability of graph neural networks: what to do?
Kirill Lukyanov
Georgii Sazonov
Serafim Boyarsky
Ilya Makarov
AAML
41
0
0
05 May 2025
DiCE-Extended: A Robust Approach to Counterfactual Explanations in Machine Learning
Volkan Bakir
Polat Goktas
Sureyya Akyuz
36
0
0
26 Apr 2025
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Emré Anakok
Pierre Barbillon
Colin Fontaine
Elisa Thébault
40
0
0
19 Mar 2025
Natural Language Counterfactual Explanations for Graphs Using Large Language Models
Flavio Giorgi
Cesare Campagnano
Fabrizio Silvestri
Gabriele Tolomei
LRM
27
1
0
28 Jan 2025
GraphXAIN: Narratives to Explain Graph Neural Networks
Mateusz Cedro
David Martens
29
0
0
04 Nov 2024
Explainable Graph Neural Networks Under Fire
Zhong Li
Simon Geisler
Yuhang Wang
Stephan Günnemann
M. Leeuwen
AAML
21
0
0
10 Jun 2024
Explaining Expert Search and Team Formation Systems with ExES
Kiarash Golzadeh
Lukasz Golab
Jaroslaw Szlichta
18
0
0
21 May 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
19
2
0
19 Dec 2023
DEGREE: Decomposition Based Explanation For Graph Neural Networks
Qizhang Feng
Ninghao Liu
Fan Yang
Ruixiang Tang
Mengnan Du
Xia Hu
6
22
0
22 May 2023
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
Indro Spinelli
Michele Guerra
F. Bianchi
Simone Scardapane
17
0
0
14 Apr 2023
GANExplainer: GAN-based Graph Neural Networks Explainer
Yiqiao Li
Jianlong Zhou
Boyuan Zheng
Fang Chen
LLMAG
19
4
0
30 Dec 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
18
7
0
28 Sep 2022
Evaluating Explainability for Graph Neural Networks
Chirag Agarwal
Owen Queen
Himabindu Lakkaraju
Marinka Zitnik
18
99
0
19 Aug 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
34
98
0
16 May 2022
Few-Shot Graph Learning for Molecular Property Prediction
Zhichun Guo
Chuxu Zhang
W. Yu
John E. Herr
Olaf Wiest
Meng-Long Jiang
Nitesh V. Chawla
AI4CE
102
130
0
16 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
156
463
0
31 Dec 2020
BRPO: Batch Residual Policy Optimization
Kentaro Kanamori
Yinlam Chow
Takuya Takagi
Hiroki Arimura
Honglak Lee
Ken Kobayashi
Craig Boutilier
OffRL
123
46
0
08 Feb 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
219
3,658
0
28 Feb 2017
1